Memory Hierarchy
Design

Ideally one would desire an indefinitely large memory capacity such
that any particular ... word would be immediately available. ... We
are ...forced to recognize the possibility of constructing a hierarchy of
memories, each of which has greater capacity than the preceding but
which is less quickly accessible.

A.W. Burks, H. H. Goldstine,
and J.von Neumann
Preliminary Discussion of the
Logical Design of an Electronic
Computing Instrument (1946)
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5.1

Introduction

Computer pioneers correctly predicted that programmers would want unlimited
amounts of fast memory. An economical solution to that desire is a memory hier-
archy, which takes advantage of locality and cost-performance of memory
technologies. The principle of localiry, presented in the first chapter, says that
most programs do not access all code or data uniformly. Locality occurs in time
(temporal locality) and in space (spatial locality). This principle, plus the guide-
line that smaller hardware can be made faster, led to hierarchies based on memo-
ries of different speeds and sizes. Figure 5.1 shows a multilevel memory
hierarchy, including typical sizes and speeds of access.

Since fast memory is expensive, a memory hierarchy is organized into several
levels—each smaller, faster, and more expensive per byte than the next lower
level. The goal is to provide a memory system with cost per byte almost as low as
the cheapest level of memory and speed almost as fast as the fastest level.

Note that each level maps addresses from a slower, larger memory to a
smaller but faster memory higher in the hierarchy. As part of address mapping,
the memory hierarchy is given the responsibility of address checking; hence, pro-
tection schemes for scrutinizing addresses are also part of the memory hierarchy.

The importance of the memory hierarchy has increased with advances in per-
formance of processors. Figure 5.2 plots processor performance projections
against the historical performance improvement in time to access main memory.
Clearly, computer architects must try to close the processor-memory gap.

The increasing size and thus importance of this gap led to the migration of the
basics of memory hierarchy into undergraduate courses in computer architecture,
and even to courses in operating systems and compilers. Thus, we’ll start with a
quick review of caches. The bulk of the chapter, however, describes more
advanced innovations that address the processor-memory performance gap.

When a word is not found in the cache, the word must be fetched from the
memory and placed in the cache before continuing. Multiple words, called a
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Figure 5.1 The levels in a typical memory hierarchy in embedded, desktop, and
server computers. As we move farther away from the processor, the memory in the
level below becomes slower and larger. Note that the time units change by factors of
10—from picoseconds to milliseconds—and that the size units change by factors of
1000—from bytes to terabytes.
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Figure 5.2 Starting with 1980 performance as a baseline, the gap in performance
between memory and processors is plotted over time. Note that the vertical axis
must be on a logarithmic scale to record the size of the processor-DRAM performance
gap. The memory baseline is 64 KB DRAM in 1980, with a 1.07 per year performance
improvement in latency (see Figure 5.13 on page 313). The processor line assumes a
1.25 improvement per year until 1986, and a 1.52 improvement until 2004, and a 1.20
improvement thereafter; see Figure 1.1 in Chapter 1.

block (or line), are moved for efficiency reasons. Each cache block includes a tag
to see which memory address it corresponds to.

A key design decision is where blocks (or lines) can be placed in a cache. The
most popular scheme is set associative, where a set is a group of blocks in the
cache. A block is first mapped onto a set, and then the block can be placed any-
where within that set. Finding a block consists of first mapping the block address
to the set, and then searching the set—usually in parallel—to find the block. The
set is chosen by the address of the data:

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set associative.
The end points of set associativity have their own names. A direct-mapped cache
has just one block per set (so a block is always placed in the same location), and a
fully associative cache has just one set (so a block can be placed anywhere).

Caching data that is only read is easy, since the copy in the cache and mem-
ory will be identical. Caching writes is more difficult: how can the copy in the
cache and memory be kept consistent? There are two main strategies. A write-
through cache updates the item in the cache and writes through to update main
memory. A write-back cache only updates the copy in the cache. When the block
is about to be replaced, it is copied back to memory. Both write strategies can use
a write buffer to allow the cache to proceed as soon as the data is placed in the
buffer rather than wait the full latency to write the data into memory.
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One measure of the benefits of different cache organizations is miss rate. Miss
rate is simply the fraction of cache accesses that result in a miss—that is, the
number of accesses that miss divided by the number of accesses.

To gain insights into the causes of high miss rates, which can inspire better
cache designs, the three Cs model sorts all misses into three simple categories:

m  Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. Compulsory misses are those that occur
even if you had an infinite cache.

m  Capacity—If the cache cannot contain all the blocks needed during execution
of a program, capacity misses (in addition to compulsory misses) will occur
because of blocks being discarded and later retrieved.

s Conflict—If the block placement strategy is not fully associative, conflict
misses (in addition to compulsory and capacity misses) will occur because a
block may be discarded and later retrieved if conflicting blocks map to its set.

Figures C.8 and C.9 on pages C-23 and C-24 show the relative frequency of
cache misses broken down by the “three C’s.” (Chapter 4 adds a fourth C, for
Coherency misses due to cache flushes to keep multiple caches coherent in a mul-
tiprocessor; we won'’t consider those here.)

Alas, miss rate can be a misleading measure for several reasons. Hence, some
designers prefer measuring misses per instruction rather than misses per memory
reference (miss rate). These two are related:

Misses _ Miss rate x Memory accesses _ Miss rate x Memory accesses
Instruction Instruction count Instruction

(It is often reported as misses per 1000 instructions to use integers instead of frac-
tions.) For speculative processors, we only count instructions that commit.

The problem with both measures is that they don’t factor in the cost of a miss.
A better measure is the average memory access time:

Average memory access time = Hit time + Miss rate X Miss penalty

where Hit time is the time to hit in the cache and Miss penalty is the time to
replace the block from memory (that is, the cost of a miss). Average memory
access time is still an indirect measure of performance; although it is a better
measure than miss rate, it is not a substitute for execution time. For example, in
Chapter 2 we saw that speculative processors may execute other instructions dur-
ing a miss, thereby reducing the effective miss penalty.

If this material is new to you, or if this quick review moves too quickly, see
Appendix C. It covers the same introductory material in more depth and includes
examples of caches from real computers and quantitative evaluations of their
effectiveness.

Section C.3 in Appendix C also presents six basic cache optimizations, which
we quickly review here. The appendix also gives quantitative examples of the bene-
fits of these optimizations.
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Larger block size to reduce miss rate-——The simplest way to reduce the miss
rate is to take advantage of spatial locality and increase the block size. Note
that larger blocks also reduce compulsory misses, but they also increase the
miss penalty.

Bigger caches to reduce miss rate—The obvious way to reduce capacity
misses is to increase cache capacity. Drawbacks include potentially longer hit
time of the larger cache memory and higher cost and power.

Higher associativity to reduce miss rate—Obviously, increasing associativity
reduces conflict misses. Greater associativity can come at the cost of
increased hit time.

Multilevel caches to reduce miss penalty—A difficult decision is whether to
make the cache hit time fast, to keep pace with the increasing clock rate of
processors, or to make the cache large, to overcome the widening gap
between the processor and main memory. Adding another level of cache
between the original cache and memory simplifies the decision (see Figure
5.3). The first-level cache can be small enough to match a fast clock cycle
time, yet the second-level cache can be large enough to capture many
accesses that would go to main memory. The focus on misses in second-level
caches leads to larger blocks, bigger capacity, and higher associativity. If L1
and L2 refer, respectively, to first- and second-level caches, we can redefine
the average memory access time:

Hit timey ; + Miss rate; , x (Hit time; , + Miss rate; , X Miss penaltyy ,)

Giving priority to read misses over writes to reduce miss penalty—A write
buffer is a good place to implement this optimization. Write buffers create
hazards because they hold the updated value of a location needed on a read
miss—that is, a read-after-write hazard through memory. One solution is to
check the contents of the write buffer on a read miss. If there are no conflicts,
and if the memory system is available, sending the read before the writes
reduces the miss penalty. Most processors give reads priority over writes.

Avoiding address translation during indexing of the cache to reduce hit
time—Caches must cope with the translation of a virtual address from the
processor to a physical address to access memory. (Virtual memory is cov-
ered in Sections 5.4 and C.4.) Figure 5.3 shows a typical relationship between
caches, translation lookaside buffers (TLBs), and virtual memory. A common
optimization is to use the page offset—the part that is identical in both virtual
and physical addresses—to index the cache. The virtual part of the address is
translated while the cache is read using that index, so the tag match can use
physical addresses. This scheme allows the cache read to begin immediately,
and yet the tag comparison still uses physical addresses. The drawback of this
virtually indexed, physically tagged optimization is that the size of the page
limits the size of the cache. For example, a direct-mapped cache can be no
bigger than the page size. Higher associativity can keep the cache index in the
physical part of the address and yet still support a cache larger than a page.
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Figure 5.3 The overall picture of a hypothetical memory hierarchy going from virtual address to L2 cache
access. The page size is 8 KB.The TLB is direct mapped with 256 entries. The L1 cache is a direct-mapped 8 KB, and
the L2 cache is a direct-mapped 4 MB. Both use 64-byte blocks. The virtual address is 64 bits and the physical address
is 40 bits. The primary difference between this figure and a real memory hierarchy, as in Figure 5.18 on page 327, is

higher associativity for caches and TLBs and a smaller virtual address than 64 bits.

For example, doubling associativity while doubling the cache size maintains

the size of the index, since it is controlled by this formula:

A seemingly obvious alternative is to just use virtual addresses to access the

plndex_ Cache size
Block size x Set associativity

cache, but this can cause extra overhead in the operating system.

Note that each of these six optimizations above has a potential disadvantage
that can lead to increased, rather than decreased, average memory access time.
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The rest of this chapter assumes familiarity with the material above, including
Figure 5.3. To put cache ideas into practice, throughout this chapter (and Appen-
dix C) we show examples from the memory hierarchy of the AMD Opteron
microprocessor. Toward the end of the chapter, we evaluate the impact of this
hierarchy on performance using the SPEC2000 benchmark programs.

The Opteron is a microprocessor designed for desktops and servers. Even
these two related classes of computers have different concerns in a memory hier-
archy. Desktop computers are primarily running one application at a time on top
of an operating system for a single user, whereas server computers may have
hundreds of users running potentially dozens of applications simultaneously.
These characteristics result in more context switches, which effectively increase
miss rates. Thus, desktop computers are concerned more with average latency
from the memory hierarchy, whereas server computers are also concerned about
memory bandwidth.

Eleven Advanced Optimizations of Cache Performance

The average memory access time formula above gives us three metrics for cache
optimizations: hit time. miss rate, and miss penalty. Given the popularity of super-
scalar processors, we add cache bandwidth to this list. Hence, we group 11
advanced cache optimizations into the following categories:

m Reducing the hit time: small and simple caches, way prediction, and trace
caches

» Increasing cache bandwidth: pipelined caches, multibanked caches, and non-
blocking caches

» Reducing the miss penalty: critical word first and merging write buffers
= Reducing the miss rate: compiler optimizations

s Reducing the miss penalty or miss rate via parallelism: hardware prefetching
and compiler prefetching

We will conclude with a summary of the implementation complexity and the per-
formance benefits of the 11 techniques presented (Figure 5.11 on page 309).

First Optimization: Small and Simple Caches to Reduce Hit Time

A time-consuming portion of a cache hit is using the index portion of the address
to read the tag memory and then compare it to the address. Smaller hardware can
be faster, so a small cache can help the hit time. It is also critical to keep an L2
cache small enough to fit on the same chip as the processor to avoid the time pen-
alty of going off chip.

The second suggestion is to keep the cache simple, such as using direct map-
ping. One benefit of direct-mapped caches is that the designer can overlap the tag
check with the transmission of the data. This effectively reduces hit time.



294

Chapter Five Memory Hierarchy Design

Hence, the pressure of a fast clock cycle encourages small and simple cache
designs for first-level caches. For lower-level caches, some designs strike a com-
promise by keeping the tags on chip and the data off chip, promising a fast tag
check, yet providing the greater capacity of separate memory chips.

Although the amount of on-chip cache increased with new generations of
microprocessors, the size of the L1 caches has recently not increased between
generations. The L1 caches are the same size for three generations of AMD
microprocessors: K6, Athlon, and Opteron. The emphasis is on fast clock rate
while hiding L1 misses with dynamic execution and using L2 caches to avoid
going to memory.

One approach to determining the impact on hit time in advance of building a
chip is to use CAD tools. CACTI is a program to estimate the access time of
alternative cache structures on CMOS microprocessors within 10% of more
detailed CAD tools. For a given minimum feature size, it estimates the hit time of
caches as you vary cache size, associativity, and number of read/write ports. Fig-
ure 5.4 shows the estimated impact on hit time as cache size and associativity are
varied. Depending on cache size, for these parameters the model suggests that hit
time for direct mapped is 1.2-1.5 times faster than two-way set associative; two-
way 1s 1.02-1.11 times faster than four-way; and four-way is 1.0-1.08 times
faster than fully associative.
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Figure 5.4 Access times as size and associativity vary in a CMOS cache. These data
are based on the CACTI model 4 4.0 by Tarjan, Thoziyoor, and Jouppi [2006]. They
assumed 90 nm feature size, a single bank, and 64-byte blocks. The median ratios of
access time relative to the direct-mapped caches are 1.32, 1.39, and 1.43 for 2-way, 4-
way, and 8-way associative caches, respectively.
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Example

Answer

Assume that the hit time of a two-way set-associative first-level data cache is 1.1
times faster than a four-way set-associative cache of the same size. The miss rate
falls from 0.049 to 0.044 for an 8 KB data cache, according to Figure C.8 in
Appendix C. Assume a hit is 1 clock cycle and that the cache is the critical path
for the clock. Assume the miss penalty is 10 clock cycles to the L2 cache for the
two-way set-associative cache, and that the L2 cache does not miss. Which has
the faster average memory access time?

For the two-way cache:

Average memory access timez_way = Hit time + Miss rate x Miss penalty

140.049x10 = 1.49

For the four-way cache, the clock time is 1.1 times longer. The elapsed time of
the miss penalty should be the same since it’s not affected by the processor clock
rate, so assume it takes 9 of the longer clock cycles:

Average memory access time4_way = Hit time x 1.1 + Miss rate X Miss penalty

1.14+0.044x9 = 1.50

If it really stretched the clock cycle time by a factor of 1.1, the performance
impact would be even worse than indicated by the average memory access time,
as the clock would be slower even when the processor is not accessing the cache.

Despite this advantage, since many processors take at least 2 clock cycles to
access the cache, L1 caches today are often at least two-way associative.

Second Optimization: Way Prediction to Reduce Hit Time

Another approach reduces conflict misses and yet maintains the hit speed of
direct-mapped cache. In way prediction, extra bits are kept in the cache to predict
the way, or block within the set of the next cache access. This prediction means
the multiplexor is set early to select the desired block, and only a single tag com-
parison is performed that clock cycle in parallel with reading the cache data. A
miss results in checking the other blocks for matches in the next clock cycle.

Added to each block of a cache are block predictor bits. The bits select which
of the blocks to try on the next cache access. If the predictor is correct, the cache
access latency is the fast hit time. If not. it tries the other block, changes the way
predictor, and has a latency of one extra clock cycle. Simulations suggested set
prediction accuracy is in excess of 85% for a two-way set, so way prediction
saves pipeline stages more than 85% of the time. Way prediction is a good match
to speculative processors, since they must already undo actions when speculation
is unsuccessful. The Pentium 4 uses way prediction.
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Third Optimization: Trace Caches to Reduce Hit Time

A challenge in the effort to find lots of instruction-level parallelism is to find
enough instructions every cycle without use dependencies. To address this chal-
lenge, blocks in a frace cache contain dynamic traces of the executed instructions
rather than static sequences of instructions as determined by layout in memory.
Hence, the branch prediction is folded into the cache and must be validated along
with the addresses to have a valid fetch.

Clearly, trace caches have much more complicated address-mapping mecha-
nisms, as the addresses are no longer aligned to power-of-two multiples of the
word size. However, they can better utilize long blocks in the instruction cache.
Long blocks in conventional caches may be entered in the middle from a branch
and exited before the end by a branch, so they can have poor space utilization.
The downside of trace caches is that conditional branches making different
choices result in the same instructions being part of separate traces, which each
occupy space in the trace cache and lower its space efficiency.

Note that the trace cache of the Pentium 4 uses decoded micro-operations,
which acts as another performance optimization since it saves decode time.

Many optimizations are simple to understand and are widely used, but a trace
cache is neither simple nor popular. It is relatively expensive in area, power, and
complexity compared to its benefits, so we believe trace caches are likely a one-
time innovation. We include them because they appear in the popular Pentium 4.

Fourth Optimization: Pipelined Cache Access to Increase
Cache Bandwidth

This optimization is simply to pipeline cache access so that the effective latency
of a first-level cache hit can be multiple clock cycles, giving fast clock cycle time
and high bandwidth but slow hits. For example, the pipeline for the Pentium took
I clock cycle to access the instruction cache, for the Pentium Pro through Pen-
tium III it took 2 clocks, and for the Pentium 4 it takes 4 clocks. This split
increases the number of pipeline stages, leading to greater penalty on mispre-
dicted branches and more clock cycles between the issue of the load and the use
of the data (see Chapter 2).

Fifth Optimization: Nonblocking Caches to Increase Cache
Bandwidth

For pipelined computers that allow out-of-order completion (Chapter 2), the pro-
cessor need not stall on a data cache miss. For example, the processor could con-
tinue fetching instructions from the instruction cache while waiting for the data
cache to return the missing data. A nonblocking cache or lockup-free cache esca-
lates the potential benefits of such a scheme by allowing the data cache to con-
tinue to supply cache hits during a miss. This “hit under miss” optimization
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Figure 5.5 Ratio of the average memory stall time for a blocking cache to hit-under-
miss schemes as the number of outstanding misses is varied for 18 SPEC92 pro-
grams. The hit-under-64-misses line allows one miss for every register in the processor.
The first 14 programs are floating-point programs: the average for hit under 1 miss is
76%, for 2 misses is 51%, and for 64 misses is 39%. The final four are integer programs,
and the three averages are 81%, 78%, and 78%, respectively. These data were collected
for an 8 KB direct-mapped data cache with 32-byte blocks and a 16-clock-cycle miss
penalty, which today would imply a second-level cache. These data were generated
using the VLIW Multiflow compiler, which scheduled loads away from use [Farkas and
Jouppi 1994]. Although it may be a good model for L1 misses to L2 caches, it would be
interesting to redo this experiment with SPEC2006 benchmarks and modern assump-
tions on miss penalty.

reduces the effective miss penalty by being helpful during a miss instead of
ignoring the requests of the processor. A subtle and complex option is that the
cache may further lower the effective miss penalty if it can overlap multiple
misses: a “hit under multiple miss” or “miss under miss” optimization. The sec-
ond option is beneficial only if the memory system can service multiple misses.

Figure 5.5 shows the average time in clock cycles for cache misses for an
8 KB data cache as the number of outstanding misses is varied. Floating-point
programs benefit from increasing complexity, while integer programs get
almost all of the benefit from a simple hit-under-one-miss scheme. As pointed
out in Chapter 3, the number of simultaneous outstanding misses limits achiev-
able instruction-level parallelism in programs.

Example

Which is more important for floating-point programs: two-way set associativity
or hit under one miss? What about integer programs? Assume the following aver-
age miss rates for 8 KB data caches: 11.4% for floating-point programs with a
direct-mapped cache, 10.7% for these programs with a two-way set-associative
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Answer

cache, 7.4% for integer programs with a direct-mapped cache, and 6.0% for inte-
ger programs with a two-way set-associative cache. Assume the average memory
stall time is just the product of the miss rate and the miss penalty and the cache
described in Figure 5.5, which we assume has a L2 cache.

The numbers for Figure 5.5 were based on a miss penalty of 16 clock cycles
assuming an L2 cache. Although the programs are older and this is low for a miss
penalty, let’s stick with it for consistency. (To see how well it would work on
modern programs and miss penalties, we’d need to redo this experiment.) For
floating-point programs, the average memory stall times are

Miss ratepy x Miss penalty = 11.4% x 16 = 1.84

Miss rate;_y,y X Miss penalty = 10.7% x 16 = 1.71

The memory stalls for two-way are thus 1.71/1.84 or 93% of direct-mapped
cache. The caption of Figure 5.5 says hit under one miss reduces the average
memory stall time to 76% of a blocking cache. Hence, for floating-point pro-
grams, the direct-mapped data cache supporting hit under one miss gives better
performance than a two-way set-associative cache that blocks on a miss.

For integer programs the calculation is

Miss ratepy X Miss penalty = 7.4% x 16 = 1.18
Miss rate, 4y X Miss penalty = 6.0% x 16 = 0.96

The memory stalls of two-way are thus 0.96/1.18 or 81% of direct-mapped
cache. The caption of Figure 5.5 says hit under one miss reduces the average
memory stall time to 81% of a blocking cache, so the two options give about the
same performance for integer programs using this data.

The real difficulty with performance evaluation of nonblocking caches is that
a cache miss does not necessarily stall the processor. In this case, it is difficult to
judge the impact of any single miss, and hence difficult to calculate the average
memory access time. The effective miss penalty is not the sum of the misses but
the nonoverlapped time that the processor is stalled. The benefit of nonblocking
caches is complex, as it depends upon the miss penalty when there are multiple
misses, the memory reference pattern, and how many instructions the processor
can execute with a miss outstanding.

In general, out-of-order processors are capable of hiding much of the miss
penalty of an L1 data cache miss that hits in the L2 cache, but are not capable of
hiding a significant fraction of an L2 cache miss.

Sixth Optimization: Multibanked Caches to Increase Cache
Bandwidth

Rather than treat the cache as a single monolithic block, we can divide it into
independent banks that can support simultaneous accesses. Banks were origi-
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Figure 5.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

nally used to improve performance of main memory and are now used inside
modern DRAM chips as well as with caches. The L2 cache of the AMD
Opteron has two banks, and the L2 cache of the Sun Niagara has four banks.

Clearly, banking works best when the accesses naturally spread themselves
across the banks, so the mapping of addresses to banks affects the behavior of
the memory system. A simple mapping that works well is to spread the
addresses of the block sequentially across the banks, called sequential inter-
leaving. For example, if there are four banks, bank O has all blocks whose
address modulo 4 is 0: bank 1 has all blocks whose address modulo 4 is 1; and
so on. Figure 5.6 shows this interleaving.

Seventh Optimization: Critical Word First and Early Restart to
Reduce Miss Penalty

This technique is based on the observation that the processor normally needs just
one word of the block at a time. This strategy is impatience: Don’t wait for the full
block to be loaded before sending the requested word and restarting the processor.
Here are two specific strategies:

m  Critical word first—Request the missed word first from memory and send it
to the processor as soon as it arrives; let the processor continue execution
while filling the rest of the words in the block.

m  Early restart—Fetch the words in normal order, but as soon as the requested
word of the block arrives, send it to the processor and let the processor con-
tinue execution.

Generally, these techniques only benefit designs with large cache blocks,
since the benefit is low unless blocks are large. Note that caches normally con-
tinue to satisfy accesses to other blocks while the rest of the block is being filled.

Alas, given spatial locality, there is a good chance that the next reference is
to the rest of the block. Just as with nonblocking caches, the miss penalty is not
simple to calculate. When there is a second request in critical word first, the
effective miss penalty is the nonoverlapped time from the reference until the
second piece arrives.
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Example

Answer

Let’s assume a computer has a 64-byte cache block, an L2 cache that takes 7
clock cycles to get the critical 8 bytes, and then 1 clock cycle per 8 bytes + 1
extra clock cycle to fetch the rest of the block. ( These parameters are similar to
the AMD Opteron.) Without critical word first. it’s 8 clock cycles for the first 8
bytes and then | clock per 8 bytes for the rest of the block. Calculate the average
miss penalty for critical word first, assuming that there will be no other accesses
to the rest of the block until it is completely fetched. Then calculate assuming the
following instructions read data 8 bytes at a time from the rest of the block. Com-
pare the times with and without critical word first.

The average miss penalty is 7 clock cycles for critical word first, and without crit-
ical word first it takes 8 + (8 — 1) x 1 or 15 clock cycles for the processor to read
a full cache block. Thus, for one word, the answer is 15 versus 7 clock cycles.
The Opteron issues two loads per clock cycle, so it takes 8/2 or 4 clocks to issue
the loads. Without critical word first, it would take 19 clock cycles to load and
read the full block. With critical word first, it’s 7+ 7 x 1 + 1 or 15 clock cycles to
read the whole block, since the loads are overlapped in critical word first. For the
full block, the answer is 19 versus 15 clock cycles.

As this example illustrates, the benefits of critical word first and early restart
depend on the size of the block and the likelihood of another access to the portion
of the block that has not yet been fetched.

Eighth Optimization: Merging Write Buffer to Reduce
Miss Penalty

Write-through caches rely on write buffers, as all stores must be sent to the next
lower level of the hierarchy. Even write-back caches use a simple buffer when a
block is replaced. If the write buffer is empty, the data and the full address are
written in the buffer, and the write is finished from the processor’s perspective:
the processor continues working while the write buffer prepares to write the word
to memory. If the buffer contains other modified blocks, the addresses can be
checked to see if the address of this new data matches the address of a valid write
buffer entry. If so, the new data are combined with that entry. Write merging is
the name of this optimization. The Sun Niagara processor, among many others.
uses write merging.

If the buffer is full and there is no address match, the cache (and processor)
must wait until the buffer has an empty entry. This optimization uses the memory
more efficiently since multiword writes are usually faster than writes performed
one word at a time. Skadron and Clark [1997] found that about 5% to 10% of per-
formance was lost due to stalls in a four-entry write butfer.

The optimization also reduces stalls due to the write buffer being full. Figure
5.7 shows a write buffer with and without write merging. Assume we had four
entries in the write buffer, and each entry could hold four 64-bit words. Without
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Write address  V A \ \
100 1 |Mem[100]}| 0 0 0
108 1 |Mem[108]| o 0 0
116 1 |Mem[116} | 0 0 0
124 1 {Mem[124]| o 0 0

Write address  V A \ v

100 1 |Mem[100]| 1 {Mem{108]| 1 |Mem[116]| 1 | Mem[124]

Figure 5.7 To illustrate write merging, the write buffer on top does not use it while
the write buffer on the bottom does. The four writes are merged into a single buffer
entry with write merging; without it, the buffer is full even though three-fourths of each
entry is wasted. The buffer has four entries, and each entry hoids four 64-bit words.The
address for each entry is on the left, with a valid bit (V) indicating whether the next
sequential 8 bytes in this entry are occupied. (Without write merging, the words to the
right in the upper part of the figure would only be used for instructions that wrote mul-
tiple words at the same time.)

this optimization, four stores to sequential addresses would fill the buffer at one
word per entry, even though these four words when merged exactly fit within a
single entry of the write buffer.

Note that input/output device registers are often mapped into the physical
address space. These I/O addresses cannot allow write merging because separate
I/O registers may not act like an array of words in memory. For example, they
may require one address and data word per register rather than multiword writes
using a single address.

In a write-back cache, the block that is replaced is sometimes called the vic-
tim. Hence, the AMD Opteron calls its write buffer a victim buffer. The write vic-
tim buffer or victim buffer contains the dirty blocks that are discarded from a
cache because of a miss. Rather than stall on a subsequent cache miss, the con-
tents of the buffer are checked on a miss to see if they have the desired data
before going to the next lower-level memory. This name makes it sounds like
another optimization called a victim cache. In contrast, the victim cache can
include any blocks discarded from the cache on a miss, whether they are dirty or
not [Jouppi 1990].

While the purpose of the write buffer is to allow the cache to proceed without
waiting for dirty blocks to write to memory, the goal of a victim cache is to reduce
the impact of conflict misses. Write buffers are far more popular today than victim
caches, despite the confusion caused by the use of “victim” in their title.
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Ninth Optimization: Compiler Optimizations to Reduce
Miss Rate

Thus far, our techniques have required changing the hardware. This next tech-
nique reduces miss rates without any hardware changes.

This magical reduction comes from optimized software—the hardware
designer’s favorite solution! The increasing performance gap between processors
and main memory has inspired compiler writers to scrutinize the memory hier-
archy to see if compile time optimizations can improve performance. Once again.
research is split between improvements in instruction misses and improvements
in data misses. The optimizations presented below are found in many modern
compilers.

Code and Data Rearrangement

Code can easily be rearranged without affecting correctness; for example,
reordering the procedures of a program might reduce instruction miss rates by
reducing conflict misses [McFarling 1989]. Another code optimization aims for
better efficiency from long cache blocks. Aligning basic blocks so that the entry
point is at the beginning of a cache block decreases the chance of a cache miss
for sequential code. If the compiler knows that a branch is likely to be taken, it
can improve spatial locality by changing the sense of the branch and swapping
the basic block at the branch target with the basic block sequentially after the
branch. Branch straightening is the name of this optimization.

Data have even fewer restrictions on location than code. The goal of such
transformations is to try to improve the spatial and temporal locality of the data.
For example, array calculations—the cause of most misses in scientific codes—
can be changed to operate on all data in a cache block rather than blindly striding
through arrays in the order that the programmer wrote the loop.

To give a feeling of this type of optimization, we will show two examples.
transforming the C code by hand to reduce cache misses.

Loop Interchange

Some programs have nested loops that access data in memory in nonsequential
order. Simply exchanging the nesting of the loops can make the code access the
data in the order they are stored. Assuming the arrays do not fit in the cache, this
technique reduces misses by improving spatial locality; reordering maximizes use
of data in a cache block before they are discarded.

/* Before */
for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = j+1)
x[1103] = 2 * x[i1[3];
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/* After */
for (i = 0; i <5000; i = i+1)
for (j = 0; j < 100; j = j+1)
x[11[3] = 2 * x[3105]s

The original code would skip through memory in strides of 100 words, while the
revised version accesses all the words in one cache block before going to the next
block. This optimization improves cache performance without affecting the num-
ber of instructions executed.

Blocking

This optimization improves temporal locality to reduce misses. We are again
dealing with multiple arrays, with some arrays accessed by rows and some by
columns. Storing the arrays row by row (row major order) or column by column
(column major order) does not solve the problem because both rows and columns
are used in every loop iteration. Such orthogonal accesses mean that trans-
formations such as loop interchange still leave plenty of room for improvement.

Instead of operating on entire rows or columns of an array, blocked algorithms
operate on submatrices or blocks. The goal is to maximize accesses to the data
loaded into the cache before the data are replaced. The code example below, which
performs matrix multiplication, helps motivate the optimization:

/* Before */

for (i = 0; i <N; i = i+1)
for (j = 0; j < N; j = j+1)
{r =03
for (k= 0; k < N; k = k + 1)
r=r + y[i][k]*z[k] [i];
x[i][i) = r;

The two inner loops read all N-by-N elements of z, read the same N elements in a
row of y repeatedly, and write one row of N elements of x. Figure 5.8 gives a
snapshot of the accesses to the three arrays. A dark shade indicates a recent
access, a light shade indicates an older access, and white means not yet accessed.

The number of capacity misses clearly depends on N and the size of the cache.
If it can hold all three N-by-N matrices. then all is well, provided there are no
cache conflicts. If the cache can hold one N-by-N matrix and one row of N, then at
least the ith row of y and the array z may stay in the cache. Less than that and
misses may occur for both x and z. In the worst case, there would be 2N + N?
memory words accessed for N* operations.

To ensure that the elements being accessed can fit in the cache, the original
code is changed to compute on a submatrix of size B by B. Two inner loops now
compute in steps of size B rather than the full length of x and z. B is called the
blocking factor. (Assume X is initialized to zero.)
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X y z
0 1 2 0 1 2 3 4 5 0 1 2
o] 0 0
1 1 1
2 2 2
i i k
3 3 3
4 4 4
5 5 5

Figure 5.8 A snapshot of the three arrays x,y, and z when N = 6 and i = 1. The age of accesses to the array ele-
ments is indicated by shade: white means not yet touched, light means older accesses, and dark means newer
accesses. Compared to Figure 5.9, elements of y and z are read repeatedly to calculate new elements of x. The vari-
ables i, j,and k are shown along the rows or columns used to access the arrays.

4 5 0 1 2 3 4 5
0
1
2
i i k
3 3 3
4 4 4
5 5 5

Figure 5.9 The age of accesses to the arrays x,y,and z when B = 3. Note in contrast to Figure 5.8 the smaller num-
ber of elements accessed.

/* After */
for (i = 0; jj < N; jj = ji+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+l)
for (3 = jis J <min(3j+B,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B,N); k = k + 1)

r+ y[i1[kI1*z[k] [];
x[1103] = x[11[3] + vy
}s

. =5 X v
It

Figure 5.9 illustrates the accesses to the three arrays using blocking. Looking
only at capacity misses, the total number of memory words accessed is 2N°/B + N2,
This total is an improvement by about a factor of B. Hence, blocking exploits a
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combination of spatial and temporal locality, since y benefits from spatial locality
and z benefits from temporal locality.

Although we have aimed at reducing cache misses, blocking can also be used
to help register allocation. By taking a small blocking size such that the block can
be held in registers, we can minimize the number of loads and stores in the
program.

Tenth Optimization: Hardware Prefetching of Instructions and
Data to Reduce Miss Penalty or Miss Rate

Nonblocking caches effectively reduce the miss penalty by overlapping execu-
tion with memory access. Another approach is to prefetch items before the pro-
cessor requests them. Both instructions and data can be prefetched, either
directly into the caches or into an external buffer that can be more quickly
accessed than main memory.

Instruction prefetch is frequently done in hardware outside of the cache. Typ-
ically. the processor fetches two blocks on a miss: the requested block and the
next consecutive block. The requested block is placed in the instruction cache
when it returns, and the prefetched block is placed into the instruction stream
buffer. If the requested block is present in the instruction stream buffer, the origi-
nal cache request is canceled, the block is read from the stream buffer, and the
next prefetch request is issued.

A similar approach can be applied to data accesses [Jouppi 1990]. Palacharla
and Kessler [1994] looked at a set of scientific programs and considered multiple
stream buffers that could handle either instructions or data. They found that eight
stream buffers could capture 50% to 70% of all misses from a processor with two
64 KB four-way set-associative caches, one for instructions and the other for data.

The Intel Pentium 4 can prefetch data into the second-level cache from up to
eight streams from eight different 4 KB pages. Prefetching is invoked if there are
two successive L2 cache misses to a page, and if the distance between those
cache blocks is less than 256 bytes. (The stride limit is 512 bytes on some models
of the Pentium 4.) It won’t prefetch across a 4 KB page boundary.

Figure 5.10 shows the overall performance improvement for a subset of
SPEC2000 programs when hardware prefetching is turned on. Note that this fig-
ure includes only 2 of 12 integer programs, while it includes the majority of the
SPEC floating-point programs.

Prefetching relies on utilizing memory bandwidth that otherwise would be
unused, but if it interferes with demand misses, it can actually lower perfor-
mance. Help from compilers can reduce useless prefetching.

Eleventh Optimization: Compiler-Controlled Prefetching to
Reduce Miss Penalty or Miss Rate

An alternative to hardware prefetching is for the compiler to insert prefetch instruc-
tions to request data before the processor needs it. There are two flavors of prefetch:
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Figure 5.10 Speedup due to hardware prefetching on Intel Pentium 4 with hard-
ware prefetching turned on for 2 of 12 SPECint2000 benchmarks and 9 of 14
SPECfp2000 benchmarks. Only the programs that benefit the most from prefetching
are shown; prefetching speeds up the missing 15 SPEC benchmarks by less than 15%
[Singhal 2004].

m  Register prefetch will load the value into a register.

u  Cache prefetch loads data only into the cache and not the register.

Either of these can be faulting or nonfaulting; that is, the address does or does
not cause an exception for virtual address faults and protection violations. Using
this terminology, a normal load instruction could be considered a “faulting regis-
ter prefetch instruction.” Nonfaulting prefetches simply turn into no-ops if they
would normally result in an exception, which is what we want.

The most effective prefetch is “semantically invisible” to a program: It
doesn’t change the contents of registers and memory, and it cannot cause virtual
memory faults. Most processors today offer nonfaulting cache prefetches. This
section assumes nonfaulting cache prefetch, also called nonbinding prefetch.

Prefetching makes sense only if the processor can proceed while prefetching
the data; that is, the caches do not stall but continue to supply instructions and
data while waiting for the prefetched data to return. As you would expect, the
data cache for such computers is normally nonblocking.

Like hardware-controlled prefetching, the goal is to overlap execution with
the prefetching of data. Loops are the important targets, as they lend themselves
to prefetch optimizations. If the miss penalty is small. the compiler just unrolls
the loop once or twice, and it schedules the prefetches with the execution. If the
miss penalty is large, it uses software pipelining (see Appendix G) or unrolls
many times to prefetch data for a future iteration.
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Issuing prefetch instructions incurs an instruction overhead, however, so
compilers must take care to ensure that such overheads do not exceed the bene-
fits. By concentrating on references that are likely to be cache misses, programs
can avoid unnecessary prefetches while improving average memory access time
significantly.

Example

Answer

For the code below. determine which accesses are likely to cause data cache
misses. Next, insert prefetch instructions to reduce misses. Finally, calculate the
number of prefetch instructions executed and the misses avoided by prefetching.
Let’s assume we have an 8 KB direct-mapped data cache with 16-byte blocks,
and it is a write-back cache that does write allocate. The elements of a and b are 8
bytes long since they are double-precision floating-point arrays. There are 3 rows
and 100 columns for a and 101 rows and 3 columns for b. Let’s also assume they
are not in the cache at the start of the program.

for (i = 0; 1 <3; i = i+l)
for (j = 05 j <100; j = j+1)
a[i1[31 = b[31[o] * b[3+1]1[0];

The compiler will first determine which accesses are likely to cause cache
misses; otherwise, we will waste time on issuing prefetch instructions for data
that would be hits. Elements of a are written in the order that they are stored in
memory, so a will benefit from spatial locality: The even values of j will miss
and the odd values will hit. Since a has 3 rows and 100 columns, its accesses will
lead to 3 x lrﬂ)‘t or 150 misses.
2
The array b does not benefit from spatial locality since the accesses are not in

the order it is stored. The array b does benefit twice from temporal locality: The
same elements are accessed for each iteration of i, and each iteration of j uses
the same value of b as the last iteration. Ignoring potential conflict misses, the
misses due to b will be for b[j+1] [0] accesses when i = 0, and also the first
access to b[j][0] when j = 0. Since j goes from 0 to 99 when i =0, accesses to
b lead to 100 + 1, or 101 misses.

Thus, this loop will miss the data cache approximately 150 times for a plus
101 times for b, or 251 misses.

To simplify our optimization. we wiil not worry about prefetching the first
accesses of the loop. These may already be in the cache, or we will pay the miss
penalty of the first few elements of a or b. Nor will we worry about suppressing the
prefetches at the end of the loop that try to prefetch beyond the end of a
(a[i]1[200] ...a[i][106]) and the end of b (b[101] [0] ... b[107] [0]). If these
were faulting prefetches, we could not take this luxury. Let’s assume that the miss
penalty is so large we need to start prefetching at least, say, seven iterations in
advance. (Stated alternatively, we assume prefetching has no benefit until the eighth
iteration.) We underline the changes to the code above needed to add prefetching.
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for (j =0; j <100; j = j+1) {
prefetch(b[j+7]1[0]);
/* b(j,0) for 7 iterations later */
prefetch(a[0][j+7]);
/* a(0,j) for 7 iterations later */
af0][4] = b[j1fo] * b[j+17[0];};
for (i = 1; i < 3; i = i+l)
for (j = 0; j < 100; j = j+1) {
prefetch(a[i][j+71);
/* a(i,j) for +7 iterations */

ali]lj] = b[3][0] * b[j+1][0];}

This revised code prefetches a{i][7] through a[i][99] and b{7][0] through
b[100] [0], reducing the number of nonprefetched misses to

m 7 misses for elements b{0] [0], b[1][0]..... b[6] [0] in the first loop

m 4 misses ([72]) for elements a[0] [0], a[0] [1], . ... a[0][6] in the first
loop (spatial locality reduces misses to 1 per 16-byte cache block)

m 4 misses ([7/2]) for elements a[1] [0], a[1][1]..... a[1] [6] in the second
loop

m 4 misses ([7/2]) for elements a[2] [0], a[2] [1], .. .. a[2][6] in the second
loop

or a total of 19 nonprefetched misses. The cost of avoiding 232 cache misses is
executing 400 prefetch instructions, likely a good trade-off.

Example

Answer

Calculate the time saved in the example above. Ignore instruction cache misses
and assume there are no conflict or capacity misses in the data cache. Assume
that prefetches can overlap with each other and with cache misses. thereby trans-
ferring at the maximum memory bandwidth. Here are the key loop times ignoring
cache misses: The original loop takes 7 clock cycles per iteration, the first
prefetch loop takes 9 clock cycles per iteration, and the second prefetch loop
takes 8 clock cycles per iteration (including the overhead of the outer for loop). A
miss takes 100 clock cycles.

The original doubly nested loop executes the multiply 3 x 100 or 300 times.
Since the loop takes 7 clock cvcles per iteration, the total is 300 x 7 or 2100 clock
cycles plus cache misses. Cache misses add 251 x 100 or 25.100 clock cycles.
giving a total of 27,200 clock cycles. The first prefetch loop iterates 100 times: at
9 clock cycles per iteration the total is 900 clock cycles plus cache misses. They
add 11 x 100 or 1100 clock cycles tor cache misses, giving a total of 2000. The
second loop executes 2 x 100 or 200 times, and at 8 clock cycles per iteration it
takes 1600 clock cycles plus 8 x 100 or 800 clock cycles for cache misses. This
gives a total of 2400 clock cycles. From the prior example. we know that this
code executes 400 prefetch instructions during the 2000 + 2400 or 4400 clock
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cycles to execute these two loops. If we assume that the prefetches are com-
pletely overlapped with the rest of the execution, then the prefetch code is
27,200/4400 or 6.2 times faster.

Although array optimizations are easy to understand, modern programs are
more likely to use pointers. Luk and Mowry [1999] have demonstrated that
compiler-based prefetching can sometimes be extended to pointers as well. Of 10
programs with recursive data structures, prefetching all pointers when a node is
visited improved performance by 4% to 31% in half the programs. On the other
hand, the remaining programs were still within 2% of their original performance.
The issue is both whether prefetches are to data already in the cache and whether
they occur early enough for the data to arrive by the time it is needed.

Cache Optimization Summary

The techniques to improve hit time, bandwidth, miss penalty, and miss rate gen-
erally affect the other components of the average memory access equation as well
as the complexity of the memory hierarchy. Figure 5.11 summarizes these tech-
niques and estimates the impact on complexity, with + meaning that the tech-
nique improves the factor, — meaning it hurts that factor, and blank meaning it has
no impact. Generally, no technique helps more than one category.

Technique

Miss
Hit Band- pen- Miss Hardware cost/
time width alty rate complexity =~ Comment

Small and simple caches

- 0 Trivial; widely used

Way-predicting caches

1 Used in Pentium 4

Trace caches 3 Used in Pentium 4

Pipelined cache access - + 1 Widely used

Nonblocking caches + 3 Widely used

Banked caches 1 Used in L2 of Opteron and Niagara

Critical word first + 2 Widely used

and early restart

Merging write buffer + 1 Widely used with write through

Compiler techniques to reduce + 0 Software is a challenge; some

cache misses computers have compiler option

Hardware prefetching of + + 2 instr., Many prefetch instructions;

instructions and data 3 data Opteron and Pentium 4 prefetch
data

Compiler-controlled + + 3 Needs nonblocking cache; possible

prefetching

instruction overhead; in many CPUs

Figure 5.11 Summary of 11 advanced cache optimizations showing impact on cache performance and complex-
ity. Although generally a technique helps oniy one factor, prefetching can reduce misses if done sufficiently early; if not,
it can reduce miss penalty. + means that the technigue improves the factor, — means it hurts that factor, and blank
means it has no impact. The complexity measure is subjective, with 0 being the easiest and 3 being a challenge.
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53

Memory Technology and Optimizations

... the one single development that put computers on their feet was the invention
of a reliable form of memory, namely, the core memory.... Its cost was reasonable,
it was reliable and, because it was reliable, it could in due course be made large.
[p.209]

Maurice Wilkes
Memoirs of a Computer Pioneer (1985)

Main memory is the next level down in the hierarchy. Main memory satisfies the
demands of caches and serves as the I/O interface, as it is the destination of input
as well as the source for output. Performance measures of main memory empha-
size both latency and bandwidth. Traditionally, main memory latency (which
affects the cache miss penalty) is the primary concern of the cache, while main
memory bandwidth is the primary concern of multiprocessors and I/O. Chapter 4
discusses the relationship of main memory and multiprocessors, and Chapter 6
discusses the relationship of main memory and I/O.

Although caches benefit from low-latency memory, it is generally easier to
improve memory bandwidth with new organizations than it is to reduce latency.
The popularity of second-level caches,.and their larger block sizes, makes main
memory bandwidth important to caches as well. In fact, cache designers increase
block size to take advantage of the high memory bandwidth.

The previous sections describe what can be done with cache organization to
reduce this processor-DRAM performance gap. but simply making caches larger
or adding more levels of caches cannot eliminate the gap. Innovations in main
memory are needed as well.

In the past. the innovation was how to organize the many DRAM chips that
made up the main memory, such as multiple memory banks. Higher bandwidth is
available using memory banks, by making memory and its bus wider, or doing
both.

Ironically, as capacity per memory chip increases, there are fewer chips in the
same-sized memory system, reducing chances for innovation. For example, a
2 GB main raemory takes 256 memory chips of 64 Mbit (16M x 4 bits), easily
organized into 16 64-bit-wide banks of 16 memory chips. However, it takes only
16 256M x 4-bit memory chips for 2 GB, making one 64-bit-wide bank the limit.
Since computers are often sold and benchmarked with small, standard memory
configurations, manufacturers cannot rely on very large memories to get band-
width. This shrinking number of chips in a standard configuration shrinks the
importance of innovations at the board level.

Hence. memory innovations are now happening inside the DRAM chips
themselves. This section describes the technology inside the memory chips and
those innovative, internal organizations. Before describing the technologies and
options, let's go over the performance metrics.

Memory latency is traditionally quoted using two measures—access time and
cycle time. Access time is the time between when a read is requested and when
the desired word arrives, while cvcle rime is the minimum time between requests
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to memory. One reason that cycle time is greater than access time is that the
memory needs the address lines to be stable between accesses.

Virtually all desktop or server computers since 1975 used DRAMs for main
memory, and virtually all use SRAMs for cache, our first topic.

SRAM Technology

The first letter of SRAM stands for static. The dynamic nature of the circuits in
DRAM requires data to be written back after being read——hence the difference
between the access time and the cycle time as well as the need to refresh. SRAMs
don’t need to refresh and so the access time is very close to the cycle time.
SRAMs typically use six transistors per bit to prevent the information from being
disturbed when read. SRAM needs only minimal power to retain the charge in
standby mode.

SRAM designs are concerned with speed and capacity, while in DRAM
designs the emphasis is on cost per bit and capacity. For memories designed in
comparable technologies, the capacity of DRAMs is roughly 4-8 times that of
SRAMs. The cycle time of SRAMs is 816 times faster than DRAMs, but they
are also 8-16 times as expensive.

DRAM Technology

As early DRAMs grew in capacity, the cost of a package with all the necessary
address lines was an issue. The solution was to multiplex the address lines,
thereby cutting the number of address pins in half. Figure 5.12 shows the basic
DRAM organization. One-half of the address is sent first, called the row access
strobe (RAS). The other half of the address, sent during the column access strobe
(CAS), follows it. These names come from the internal chip organization, since
the memory is organized as a rectangular matrix addressed by rows and columns.

|
ﬁ Column decoder
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Figure 5.12 Internal organization of a 64M bit DRAM. DRAMs often use banks of
memory arrays internally and select between them. For example, instead of one 16,384
% 16,384 memory,a DRAM might use 256 1024 x 1024 arrays or 16 2048 x 2048 arrays.



312

Chapter Five Memory Hierarchy Design

An additional requirement of DRAM derives from the property signified by
its first letter, D, for dynamic. To pack more bits per chip, DRAMs use only a sin-
gle transistor to store a bit. Reading that bit destroys the information, so it must
be restored. This is one reason the DRAM cycle time is much longer than the
access time. In addition, to prevent loss of information when a bit is not read or
written, the bit must be “refreshed” periodically. Fortunately, all the bits in a row
can be refreshed simultaneously just by reading that row. Hence, every DRAM in
the memory system must access every row within a certain time window, such as
8 ms. Memory controllers include hardware to refresh the DRAMSs periodically.

This requirement means that the memory system is occasionally unavailable
because it is sending a signal telling every chip to refresh. The time for a refresh
is typically a full memory access (RAS and CAS) for each row of the DRAM.
Since the memory matrix in a DRAM is conceptually square, the number of steps
in a refresh is usually the square root of the DRAM capacity. DRAM designers
try to keep time spent refreshing to less than 5% of the total time.

So far we have presented main memory as if it operated like a Swiss train,
consistently delivering the goods exactly according to schedule. Refresh belies
that analogy, since some accesses take much longer than others do. Thus, refresh
is another reason for variability of memory latency and hence cache miss penalty.

Amdahl] suggested a rule of thumb that memory capacity should grow lin-
early with processor speed to keep a balanced system, so that a 1000 MIPS pro-
cessor should have 1000 MB of memory. Processor designers rely on DRAMs to
supply that demand: In the past, they expected a fourfold improvement in capac-
ity every three years, or 55% per year. Unfortunately, the performance of
DRAMs is growing at a much slower rate. Figure 5.13 shows a performance
improvement in row access time, which is related to latency, of about 5% per
year. The CAS or data transfer time, which is related to bandwidth, is growing at
more than twice that rate.

Although we have been talking about individual chips, DRAMs are com-
monly sold on small boards called dual inline memory modules (DIMMs).
DIMMs typically contain 4-16 DRAMs, and they are normally organized to be §
bytes wide (+ ECC) for desktop systems.

In addition to the DIMM packaging and the new interfaces to improve the
data transfer time, discussed in the following subsections, the biggest change to
DRAMs has been a slowing down in capacity growth. DRAMs obeyed Moore’s
Law for 20 years, bringing out a new chip with four times the capacity every
three years. Due to a slowing in demand for DRAMs, since 1998 new chips only
double capacity every two years. In 2006, this new slower pace shows signs of
further deceleration.

Improving Memory Performance inside a DRAM Chip

As Moore's Law continues to supply more transistors and as the processor-
memory gap increases pressure on memory performance, the ideas of the previ-
ous section have made their way inside the DRAM chip. Generally, innovation
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Row access strobe (RAS)

Column access
strobe (CAS)/

Year of Slowest Fastest data transfer Cycle

introduction Chip size DRAM (ns) DRAM (ns) time (ns) time (ns)
1980 64K bit 180 150 75 250
1983 256K bit 150 120 50 220
1986 IM bit 120 100 25 190
1989 4M bit 100 80 20 165
1992 16M bit 80 60 15 120
1996 64M bit 70 50 12 110
1998 128M bit 70 50 10 100
2000 256M bit 65 45 7 90
2002 512M bit 60 40 5 80
2004 1G bit 55 35 5 70
2006 2G bit 50 30 25 60

Figure 5.13 Times of fast and slow DRAMs with each generation. (Cycle time is
defined on page 310.) Performance improvement of row access time is about 5% per
year. The improvement by a factor of 2 in column access in 1986 accompanied the
switch from NMOS DRAMs to CMOS DRAM:s.

has led to greater bandwidth, sometimes at the cost of greater latency. This sub-
section presents techniques that take advantage of the nature of DRAMs.

As mentioned earlier, a DRAM access is divided into row access and column
access. DRAMs must buffer a row of bits inside the DRAM for the column
access, and this row is usually the square root of the DRAM size—16K bits for
256M bits, 64K bits for 1G bits, and so on.

Although presented logically as a single monolithic array of memory bits, the
internal organization of DRAM actually consists of many memory modules. For
a variety of manufacturing reasons, these modules are usually 1-4M bits. Thus, if
you were to examine a 1G bit DRAM under a microscope, you might see 512
memory arrays, each of 2M bits, on the chip. This large number of arrays inter-
nally presents the opportunity to provide much higher bandwidth off chip.

To improve bandwidth, there has been a variety of evolutionary innovations
over time. The first was timing signals that allow repeated accesses to the row
buffer without another row access time, typically called fast page mode. Such a
buffer comes naturally, as each array will buffer 1024-2048 bits for each access.

Conventional DRAMs had an asynchronous interface to the memory control-
ler, and hence every transfer involved overhead to synchronize with the control-
ler. The second major change was to add a clock signal to the DRAM interface,
so that the repeated transfers would not bear that overhead. Synchronous DRAM



314

Chapter Five Memory Hierarchy Design

Clock rate M transfers DRAM MB/sec DIMM
Standard (MHz) per second name /DIMM name
DDR 133 266 DDR266 ) 2128 PC2100
DDR 150 300 DDR300 2400 PC2400
DDR 200 400 DDR400 3200 PC3200
DDR2 266 533 DDR2-533 4264 PC4300
DDR2 333 667 DDR2-667 5336 PC5300
DDR2 400 800 DDR2-800 6400 PC6400
DDR3 533 1066 DDR3-1066 8528 PC8500
DDR3 666 1333 DDR3-1333 10,664  PC10700
DDR3 800 1600 DDR3-1600 12,800  PC12800

Figure 5.14 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2006.
Note the numerical relationship between the columns. The third column is twice the
second, and the fourth uses the number from the third column in the name of the
DRAM chip. The fifth column is eight times the third column, and a rounded version of
this number is used in the name of the DIMM. Although not shown in this figure, DDRs
also specify latency in clock cycles.The name DDR400 CL3 means that memory delays 3
clock cycles of 5 ns each—the clock period a 200 MHz clock—Dbefore starting to deliver
the request data. The exercises explore these details further.

(SDRAM) is the name of this optimization. SDRAMs typically also had a pro-
grammable register to hold the number of bytes requested, and hence can send
many bytes over several cycles per request.

The third major DRAM innovation to increase bandwidth is to transfer data
on both the rising edge and falling edge of the DRAM clock signal, thereby dou-
bling the peak data rate. This optimization is called double data rate (DDR). To
supply data at these high rates, DDR SDRAM:s activate multiple banks internally.

The bus speeds for these DRAMs are also 133-200 MHz, but these DDR
DIMMs are confusingly labeled by the peak DIMM bandwidth. Hence, the
DIMM name PC2100 comes from 133 MHz x 2 x 8 bytes or 2100 MB/sec. Sus-
taining the confusion, the chips themselves are labeled with the number of bits
per second rather than their clock rate, so a 133 MHz DDR chip is called a
DDR266. Figure 5.14 shows the relationship between clock rate, transfers per
second per chip, chip name, DIMM bandwidth, and DIMM name.

Example

Answer

Suppose you measured a new DDR3 DIMM to transfer at 16000 MB/sec. What
do you think its name will be? What is the clock rate of that DIMM? What is your
guess of the name of DRAMs used in that DIMM?

A good guideline is to assume that DRAM marketers picked names with the big-
gest numbers. The DIMM name is likely PC16000. The clock rate of the DIMM s
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“lock rate x 2 x & 16000
Clock rate = 16000/16
1000

Clock rate

or 1000 MHz and 2000 M transfers per second, so the DRAM name is likely to
be DDR3-2000.

DDR is now a sequence of standards. DDR2 lowers power by dropping the
voltage from 2.5 volts to 1.8 volts and offers higher clock rates: 266 MHz, 333
MHz, and 400 MHz. DDR3 drops voltage to 1.5 volts and has a maximum clock
speed of 800 MHz.

In each of these three cases. the advantage of such optimizations is that they
add a small amount of logic to exploit the high potential internal DRAM band-
width, adding little cost to the system while achieving a significant improvement
in bandwidth.

Protection:Virtual Memory and Virtual Machines

A virtual machine is taken to be an efficient, isolated duplicate of the real
machine. We explain these notions through the idea of a virtual machine monitor
(VMM). ... a VMM has three essential characteristics. First, the VMM provides an
environment for programs which is essentially identical with the original machine;
second, programs run in this environment show at worst only minor decreases in
speed; and last, the VMM is in complete control of system resources.

Gerald Popek and Robert Goldberg
“Formal requirements for virtualizable third generation architectures,”
Communications of the ACM (July 1974)

Security and privacy are two of the most vexing challenges for information tech-
nology in 2006. Electronic burglaries, often involving lists of credit card num-
bers, are announced regularly, and it's widely believed that many more go
unreported. Hence, both researchers and practitioners are looking for new ways
to make computing systems more secure. Although protecting information is not
limited to hardware, in our view real security and privacy will likely involve
innovation in computer architecture as well as in systems software.

This section starts with a review of the architecture support for protecting
processes from each other via virtual memory. It then describes the added protec-
tion provided from virtual machines, the architecture requirements of virtual
machines, and the performance of a virtual machine.

Protection via Virtual Memory

Page-based virtual memory, including a translation lookaside buffer that caches
page table entries, is the primary mechanism that protects processes from each



316

Chapter Five Memory Hierarchy Design

other. Sections C.4 and C.5 in Appendix C review virtual memory, including a
detailed description of protection via segmentation and paging in the 80x86. This
subsection acts as a quick review: refer to those sections if it’s too quick.

Multiprogramming, where several programs running concurrently would
share a computer, led to demands for protection and sharing among programs and
to the concept of a process. Metaphorically, a process is a program’s breathing air
and living spac:  that is, a running program plus any state needed to continue
running it. At auy instant, it must be possible to switch from one process to
another. This exchange is called a process switch or context switch.

The operating system and architecture join forces to allow processes to share
the hardware yet not interfere with each other. To do this, the architecture must
limit what a process can access when running a user process yet allow an operat-
ing system process to access more. At the minimum, the architecture must do the
following:

1. Provide at least two modes, indicating whether the running process is a user
process or an operating system process. This latter process is sometimes
called a kernel process or a supervisor process.

2. Provide a portion of the processor state that a user process can use but not
write. This state includes an user/supervisor mode bit(s). an exception enable/
disable bit, and memory protection information. Users are prevented from
writing this state because the operating system cannot control user processes
if users can give themselves supervisor privileges, disable exceptions, or
change memory protection.

3. Provide mechanisms whereby the processor can go from user mode to super-
visor mode and vice versa. The first direction is typically accomplished by a
svstem call, implemented as a special instruction that transfers control to a
dedicated location in supervisor code space. The PC is saved from the point
of the system call, and the processor is placed in supervisor mode. The return
to user mode is like a subroutine return that restores the previous user/super-
visor mode.

4. Provide mechanisms to limit memory accesses to protect the memory state of
a process without having to swap the process to disk on a context switch.

Appendix C describes several memory protection schemes, but by far the
most popular is adding protection restrictions to each page of virtual memory.
Fixed-sized pages, typically 4 KB or § KB long. are mapped from the virtual
address space into physical address space via a page table. The protection restric-
tions are included in each page table entry. The protection restrictions might
determine whether a user process can read this page. whether a user process can
write to this page, and whether code can be executed from this page. In addition.
a process can neither read nor write a page if it is not in the page table. Since only
the OS can update the page table, the paging mechanism provides total access
protection.

Paged virtual memory means that every memory access logically takes at
least twice as long, with one memory access to obtain the physical address and a



5.4 Pretection: Virtual Memory and Virtual Machines 317

second access to get the data. This cost would be far too dear. The solution is to
rely on the principle of locality: if the accesses have locality, then the address
translations for the accesses must also have locality. By keeping these address
translations in a special cache, a memory access rarely requires a second access
to translate the data. This special address translation cache is referred to as a
translation lookaside buffer (TLB).

A TLB entry is like a cache entry where the tag holds portions of the virtual
address and the data portion holds a physical page address, protection field, valid
bit, and usually a use bit and a dirty bit. The operating system changes these bits
by changing the value in the page table and then invalidating the corresponding
TLB entry. When the entry is reloaded from the page table, the TLB gets an accu-
rate copy of the bits.

Assuming the computer faithfully obeys the restrictions on pages and maps
virtual addresses to physical addresses, it would seem that we are done. Newspa-
per headlines suggest otherwise.

The reason we’re not done is that we depend on the accuracy of the operating
system as well as the hardware. Today’s operating systems consist of tens of mil-
lions of lines of code. Since bugs are measured in number per thousand lines of
code, there are thousands of bugs in production operating systems. Flaws in the
OS have led to vulnerabilities that are routinely exploited.

This problem. and the possibility that not enforcing protection could be much
more costly than in the past, has led some to look for a protection model with a
much smaller code base than the full OS, such as Virtual Machines.

Protection via Virtual Machines

An idea related to virtual memory that is almost as old is Virtual Machines (VM).
They were first developed in the late 1960s. and they have remained an important
part of mainframe computing over the years. Although largely ignored in the
domain of single-user computers in the 1980s and 1990s, they have recently gained
popularity due to

m the increasing importance of isolation and security in modern systems,
a the failures in security and reliability of standard operating systems,
» the sharing of a single computer among many unrelated users, and

» the dramatic increases in raw speed of processors, which makes the overhead
of VMs more acceptable.

The broadest definition of VMs includes basically all emulation methods that
provide a standard software interface, such as the Java VM. We are interested in
VMs that provide a complete system-leve] environment at the binary instruction
set architecture (ISA) level. Although some VMs run different ISAs in the VM
from the native hardware, we assume they always match the hardware. Such VMs
are called (Operating) System Virtual Machines. IBM VM/370, VMware ESX
Server, and Xen are examples. They present the illusion that the users of a VM
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have an entire computer to themselves. including a copy of the operating system.
A single computer runs multiple VMs and can support a number of different
operating systems (OSes). On a conventional platform, a single OS “owns” all
the hardware resources, but with a VM, multiple OSes all share the hardware
resources.

The software that supports VMs is called a virtual machine monitor (VMM)
or hypervisor; the VMM is the heart of Virtual Machine technology. The underly-
ing hardware platform is called the host, and its resources are shared among the
guest VMs. The VMM determines how to map virtual resources to physical
resources: A physical resource may be time-shared, partitioned, or even emulated
in software. The VMM is much smaller than a traditional OS; the isolation por-
tion of a VMM is perhaps only 10.000 lines of code.

In general, the cost of processor virtualization depends on the workload.
User-level processor-bound programs, such as SPEC CPU2006, have zero virtu-
alization overhead because the OS is rarely invoked so everything runs at native
speeds. I/O-intensive workloads generally are also OS-intensive, which execute
many system calls and privileged instructions that can result in high virtualiza-
tion overhead. The overhead is determined by the number of instructions that
must be emulated by the VMM and how slowly they are emulated. Hence, when
the guest VMs run the same ISA as the.host, as we assume here, the goal of the
architecture and the VMM is to run almost all instructions directly on the native
hardware. On the other hand, if the I/O-intensive workload is also I/O-bound,
the cost of processor virtualization can be completely hidden by low processor
utilization since it is often waiting for 1/O (as we will see later in Figures 5.15
and 5.16).

Although our interest here is in VMs for improving protection, VMs provide
two other benefits that are commercially significant:

1. Managing software. VMs provide an abstraction that can run the complete
software stack, even including old operating systems like DOS. A typical
deployment might be some VMs running legacy OSes, many running the cur-
rent stable OS release, and a few testing the next OS release.

2. Managing hardware. One reason for multiple servers is to have each applica-
tion running with the compatible version of the operating system on separate
computers, as this separation can improve dependability. VMs allow these
separate software stacks to run independently yet share hardware, thereby
consolidating the number of servers. Another example is that some VMMs
support migration of a running VM to a different computer, either to balance
load or to evacuate from failing hardware.

Requirements of a Virtual Machine Monitor

What must a VM monitor do? It presents a software interface to guest software. it
must isolate the state of guests from each other, and it must protect itself from guest
software (including guest OSes). The qualitative requirements are
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s Guest software should behave on a VM exactly as if it were running on the
native hardware, except for performance-related behavior or limitations of
fixed resources shared by multiple VMs.

s Guest software should not be able to change allocation of real system
resources directly.

To “virtualize™ the processor, the VMM must control just about everything—
access to privileged state, address translation, I/O, exceptions and interrupts—
even though the guest VM and OS currently running are temporarily using them.

For example, in the case of a timer interrupt, the VMM would suspend the
currently running guest VM, save its state, handle the interrupt, determine which
guest VM to run next, and then load its state. Guest VMs that rely on a timer
interrupt are provided with a virtual timer and an emulated timer interrupt by the
VMM.

To be in charge, the VMM must be at a higher privilege level than the guest
VM, which generally runs in user mode; this also ensures that the execution of any
privileged instruction will be handled by the VMM. The basic requirements of
system virtual machines are almost identical to those for paged virtual memory
listed above:

m At least two processor modes, system and user.

m A privileged subset of instructions that is available only in system mode,
resulting in a trap if executed in user mode. All system resources must be
controllable only via these instructions.

(Lack of) Instruction Set Architecture Support for
Virtual Machines

If VMs are planned for during the design of the ISA, it’s relatively easy to both
reduce the number of instructions that must be executed by a VMM and how long
it takes to emulate them. An architecture that allows the VM to execute directly
on the hardware earns the title virtualizable, and the IBM 370 architecture
proudly bears that label.

Alas, since VMs have been considered for desktop and PC-based server
applications only fairly recently, most instruction sets were created without virtu-
alization in mind. These culprits include 80x86 and most RISC architectures.

Because the VMM must ensure that the guest system only interacts with vir-
tual resources. a conventional guest OS runs as a user mode program on top of
the VMM. Then, if a guest OS attempts to access or modify information related
to hardware resources via a privileged instcuction—for example, reading or writ-
ing the page table pointer—it will trap to the VMM. The VMM can then effect
the appropriate changes to corresponding real resources.

Hence, if any instruction that tries to read or write such sensitive information
traps when executed in user mode, the VMM can intercept it and support a virtual
version of the sensitive information as the guest OS expects.
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In the absence of such support, other measures must be taken. A VMM must
take special precautions to locate all problematic instructions and ensure that thev
behave correctly when executed by a guest OS. thereby increasing the complex-
ity of the VMM and reducing the performance of running the VM.

Sections 5.5 and 5.7 give concrete examples of problematic instructions in
the 80x86 architecture.

Impact of Virtual Machines on Virtual Memory and I/0

Another challenge is virtualization of virtual memory, as each guest OS in every
VM manages its own set of page tables. To make this work, the VMM separates
the notions of real and phvsical memory (which are often treated synonymously),
and makes real memory a separate, intermediate level between virtual memory
and physical memory. (Some use the terms virtual memory, physical memory,
and machine memory to name the same three levels.) The guest OS maps virtual
memory to real memory via its page tables, and the VMM page tables map the
guests’ real memory to physical memory. The virtual memory architecture is
specified either via page tables. as in IBM VM/370 and the 80x86, or via the TLB
structure, as in many RISC architectures.

Rather than pay an extra level of indirection on every memory access, the
VMM maintains a shadow page table that maps directly from the guest virtual
address space to the physical address space of the hardware. By detecting all mod-
ifications to the guest’s page table. the VMM can ensure the shadow page table
entries being used by the hardware for translations correspond to those of the
guest OS environment, with the exception of the correct physical pages substituted
for the real pages in the guest tables. Hence, the VMM must trap any attempt by
the guest OS to change its page table or to access the page table pointer. This is
commonly done by write protecting the guest page tables and trapping any access
to the page table pointer by a guest OS. As noted above, the latter happens natu-
rally if accessing the page table pointer is a privileged operation.

The IBM 370 architecture solved the page table problem in the 1970s with an
additional level of indirection that is managed by the VMM. The guest OS keeps
its page tables as before, so the shadow pages are unnecessary. AMD has pro-
posed a similar scheme for their Pacifica revision to the 80x86.

To virtualize the TLB architected in many RISC computers, the VMM man-
ages the real TLB and has a copy of the contents of the TLB of each guest VM.
To pull this off, any instructions that access the TLB must trap. TLBs with Pro-
cess ID tags can support a mix of entries from different VMs and the VMM,
thereby avoiding flushing of the TLB on a VM switch. Meanwhile, in the back-
ground, the VMM supports a mapping between the VMs’ virtual Process IDs and
the real Process IDs.

The final portion of the architecture to virtualize is /O. This is by far the most
difficult part of system virtualization because of the increasing number of I/O
devices attached to the computer and the increasing diversity of /O device types.
Another difficulty is the sharing of a real device among multiple VMs, and yet
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another comes from supporting the myriad of device drivers that are required, espe-
cially if different guest OSes are supported on the same VM system. The VM illu-
sion can be maintained by giving each VM generic versions of each type of /O
device driver, and then leaving it to the VMM to handle real I/O.

The method for mapping a virtual to physical I/O device depends on the type
of device. For example, physical disks are normally partitioned by the VMM to
create virtual disks for guest VMs, and the VMM maintains the mapping of vir-
tual tracks and sectors to the physical ones. Network interfaces are often shared
between VMs in very short time slices, and the job of the VMM is to keep track
of messages for the virtual network addresses to ensure that guest VMs receive
only messages intended for them.

An Example VMM:The Xen Virtual Machine

Early in the development of VMs, a numter of inefficiencies became apparent.
For example, a guest OS manages its virtual to real page mapping, but this map-
ping is ignored by the VMM, which performs the actual mapping to physical
pages. In other words, a significant amount of wasted effort is expended just to
keep the guest OS happy. To reduce such inefficiencies, VMM developers
decided that it may be worthwhile to allow the guest OS to be aware that it is run-
ning on a VM. For example, a guest OS could assume a real memory as large as
its virtual memory so that no memory management is required by the guest OS.

Allowing small modifications to the guest OS to simplify virtualization is
referred to as paravirtualization, and the open source Xen VMM is a good exam-
ple. The Xen VMM provides a guest OS with a virtual machine abstraction that is
similar to the physical hardware, but it drops many of the troublesome pieces. For
example. to avoid flushing the TLB, Xen maps itself into the upper 64 MB of the
address space of ecach VM. It allows the guest OS to allocate pages, just checking
to be sure it does not violate protection restrictions. To protect the guest OS from
the user programs in the VM. Xen takes advantage of the four protection levels
available in the 80x86. The Xen VMM runs at the highest privilege level (0), the
guest OS runs at the next level (1), and the applications run at the lowest privilege
level (3). Most OSes for the 80x86 kecp everything at privilege levels O or 3.

For subsetting to work properly, Xen modifies the guest OS to not use prob-
lematic portions of the architecture. For example, the port of Linux to Xen
changed about 3000 lines, or about 1% of the 80x86-specific code. These
changes. however, do not affect the application-binary interfaces of the guest OS.

To simplify the /O challenge of VMs, Xen recently assigned privileged vir-
tual machines to each hardware I/O device. These special VMs are called driver
domains. (Xen calls its VMs “domains.”) Driver domains run the physical device
drivers, although interrupts are still handled by the VMM before being sent to the
appropriate driver domain. Regular VMs. called guest domains, run simple vir-
tual device drivers that must communicate with the physical device drivers in the
driver domains over a channel to access the physical I/O hardware. Data are sent
between guest and driver domains by page remapping.
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Figure 5.15 compares the relative performance of Xen for six benchmarks.
According to these experiments, Xen performs very close to the native perfor-
mance of Linux. The popularity of Xen, plus such performance results, led stan-
dard releases of the Linux kernel to incorporate Xen’s paravirtualization changes.

A subsequent study noticed that the experiments in Figure 5.15 were based on a
single Ethernet network interface card (NIC), and the single NIC was a perfor-
mance bottleneck. As a result, the higher processor utilization of Xen did not affect
performance. Figure 5.16 compares TCP receive performance as the number of
NICs increases from 1 to 4 for native Linux and two configurations of Xen:

1. Xen privileged VM only (driver domain). To measure the overhead of Xen
without the driver VM scheme, the whole application is run inside the single
privileged driver domain.

2. Xen guest VM + privileged VM. In the more natural setting, the application
and virtual device driver run in the guest VM (guest domain), and the physi-
cal device driver runs in the privileged driver VM (driver domain).

Clearly, a single NIC is a bottleneck. Xen driver VM peaks at 1.9 Gbits/sec with
2 NICs while native Linux peaks at 2.5 Gbits/sec with 3 NICs. For guest VMs,
the peak receive rate drops under 0.9 Gbits/sec.

After removing the NIC bottleneck, a different Web server workload showed
that driver VM Xen achieves less than 80% of the throughput of native Linux,
while guest VM + driver VM drops to 34%.
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Figure 5.15 Relative performance for Xen versus native Linux.The experiments were
performed on a Dell 2650 dual processor 2.4 GHz Xeon server with 2 GB RAM, one
Broadcom Tigon 3 Gigabit Ethernet NIC, a single Hitachi DK32EJ 146 GB 10K RPM SCSI
disk, and running Linux version 2.4.21 [Barham et al. 2003; Clark et al. 2004].
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Figure 5.16 TCP receive performance in Mbits/sec for native Linux versus two con-
figurations of Xen. Guest VM + driver VM is the conventional configuration [Menon et
al. 2005]. The experiments were performed on a Dell PowerEdge 1600SC running a 2.4
GHz Xeon server with 1 GB RAM, and four Intel Pro-1000 Gigabit Ethernet NIC, running
Linux version 2.6.10 and Xen version 2.0.3.
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Figure 5.17 Relative change in instructions executed, L2 cache misses, and I-TLB
and D-TLB misses of native Linux versus two configurations of Xen for a Web work-
load [Menon et al. 2005]. Higher L2 and TLB misses come from the lack of support in
Xen for superpages, globally marked PTEs, and gather DMA [Menon 2006].

Figure 5.17 explains this drop in performance by plotting the relative change
in instructions executed, L2 cache misses, and instruction and data TLB misses
for native Linux and the two Xen configurations. Data TLB misses per instruc-
tion are 12-24 times higher for Xen than for native Linux, and this is the primary
reason for the slowdown for the privileged driver VM configuration. The higher
TLB misses are because of two optimizations that Linux uses that Xen does not:
superpages and marking page table entries as global. Linux uses superpages for
part of its kernel space, and using 4 MB pages obviously lowers TLB misses ver-
sus using 1024 4 KB pages. PTEs marked global are not flushed on a context
switch, and Linux uses them for its kernel space.
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5.5

In addition o higher D-TLB misses. the more natural guest VM + driver VM
configuration executes more than twice as many instructions. The increase is due
to page remapping and page transfer between the driver and guest VMs and due
to communication between the two VMs over a channel. This is also the reason
for the lower receive performance of guest VMs in Figure 5.16. In addition, the
guest VM configuration has more than four times as many L2 caches misses. The
reason is Linux uses a zero-copy network interface that depends on the ability of
the NIC tc do DMA from different locations in memory. Since Xen does not sup-
port “gather DMA™ in its virtual network interface. it can’t do true zero-copy in
the guest VM. resulting in more L2 cache misses.

While future versions of Xen may be able to incorporate support for super-
pages, globally marked PTEs. and gather DMA, the higher instruction overhead
looks to be inherent 1n the split between guest VM and driver VM.

Crosscutting Issues: The Design of Memory Hierarchies

This section describes three topics discussed in other chapters that are fundamen-
tal to memory hierarchies.

Protection and Instruction Set Architecture

Protection is a joint effort of architecture and operating systems. but architects
had to modify some awkward details of existing instruction set architectures
when virtual memory became popular. For example, to support virtual memory in
the IBM 370, architects had to change the successful IBM 360 instruction set
architecture that had been announced just six years before. Similar adjustments
are being made todayv to accommodate virtual machines.

For example. the 80x86 instruction POPF loads the flag registers from the top
of the stack in memory. One of the flags is the Interrupt Enable (IE) flag. If you
run the PCPF instruction in user mode, rather than trap it simply changes all the
flags except IE. In system mode, it does change the IE. Since a guest OS runs in
user mode inside a VM, this is a problem, as it expects to see a changed IE.

Histor:cally. IBM mainfrarne hardware and VMM took three steps to improve
performance of virtual machines:

1. Reduce the cost of processor virtualization
2. Reduce interrupt overhead cost due to the virtualization
Reduce interrupt cost by steering interrupts to the proper VM without invok-

ing VMM

IBM is still the gold standard of virtual machine technology. For example. an
IBM mainframe ran thousands of Linux VMs in 2000. while Xen ran 25 VMs in
2004 [Clark et al. 2004].



5.5 Crosscutting Issues: The Design of Memory Hierarchies 325

In 2006. new proposals by AMD and Intel try to address the first point, reduc-
ing the cost of processor virtualization (see Section 5.7). It will be interesting
how many generations of architecture and VMM modifications it will take to
address all three points, and how long before virtual machines of the 21st century
will be as efficient as the IBM mainframes and VMMs of the 1970s.

Speculative Execution and the Memory System

Inherent in processors that support speculative execution or conditional instruc-
tions is the possibility of generating invalid addresses that would not occur with-
out speculative execution. Not only would this be incorrect behavior if protection
exceptions were taken. but the benefits of speculative execution would be
swamped by false exception overhead. Hence. the memory system must identify
speculatively executed instructions and conditionally executed instructions and
suppress the corresponding exception.

By similar reasoning, we cannot allow such instructions to cause the cache to
stall on a miss because again unnecessary stalls could overwhelm the benefits of
speculation. Hence, these processors must be matched with nonblocking caches.

In reality, the penalty of an L2 miss is so large that compilers normally only
speculate on L1 misses. Figure 5.5 on page 297 shows that for some well-
behaved scientific programs the compiler can sustain multiple outstanding L2
misses to cut the L2 miss penalty effectivelv. Once again, for this to work, the
memory system behind the cache must match the goals of the compiler in num-
ber of simultaneous memory accesses.

I/0 and Consistency of Cached Data

Data can be found in memory and in the cache. As long as one processor is the
sole device changing or reading the data and the cache stands between the pro-
cessor and memory, there is little danger in the processor seeing the old or srale
copy. As mentioned in Chapter 4, multiple processors and IO devices raise the
opportunity for copies to be inconsistent and to read the wrong copy.

The frequency of the cache coherency problem is different for multiproces-
sors than 1/0. Multiple data copies are a rare event for I/O-—one to be avoided
whenever possible—but a program running on multiple processors will wanr to
have copies of the same data in several caches. Performance of a multiprocessor
program depends on the performance of the system when sharing data.

The I/O cache coherency question is this: Where does the /O occur in the
computer—between the I/O device and the cache or between the /O device and
main memory? If input puts data into the cuche and output reads data from the
cache. both 1/O and the processor see the same data. The difficulty in this
approach is that it interferes with the processor and can cause the processor to
stall for /O. Input may also interfere with the cache by displacing some informa-
tion with new data that is unlikely to be accessed soon.
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5.6

The goal for the I/O system in a computer with a cache is to prevent the stale-
data problem while interfering as little as possible. Many systems, therefore, pre-
fer that I/O occur directly to main memory, with main memory acting as an /O
butfer. If a write-through cache were used, then memory would have an up-to-
date copy of the information, and there would be no stale-data issue for output.
(This benefit is a reason processors used write through.) Alas, write through s
usually found today only in first-level data caches backed by an L2 cache that
uses write back.

Input requires some extra work. The software solution is to guarantee that no
blocks of the input buffer are in the cache. A page containing the buffer can be
marked as noncachable, and the operating system can always input to such a
page. Alternatively, the operating system can flush the buffer addresses from the
cache before the input occurs. A hardware solution is to check the I/O addresses
on input to see if they are in the cache. If there is a match of I/O addresses in the
cache, the cache entries are invalidated to avoid stale data. All these approaches
can also be used for output with write-back caches.

Putting It All Together: AMD Opteron Memory Hierarchy

This section unveils the AMD Opteron memory hierarchy and shows the perfor-
mance of its components for the SPEC2000 programs. The Opteron is an out-of-
order execution processor that fetches up to three 80x86 instructions per clock
cycle, translates them into RISC-like operations, issues three of them per clock
cycle. and it has 11 parallel execution units. In 2006, the 12-stage integer pipeline
yields a maximum clock rate of 2.8 GHz, and the fastest memory supported is
PC3200 DDR SDRAM. It uses 48-bit virtual addresses and 40-bit physical
addresses. Figure 5.18 shows the mapping of the address through the multiple
levels of data caches and TLBs, similar to the format of Figure 5.3 on page 292.

We are now ready to follow the memory hierarchy in action: Figure 5.19 15
labeled with the steps of this narrative. First, the PC is sent to the instruction
cache. It is 64 KB, two-way set associative with a 64-byte block size and LRU
replacement. The cache index is

5Index _ Cache size _ 64K _ 512 = 2°
- Block size x Set associativity  64x2~ ~ 7 °

or 9 bits. It is virtually indexed and physically tagged. Thus, the page frame of the
instruction’s data address is sent to the instruction TLB (step 1) at the same time
the 9-bit index (plus an additional 2 bits to select the appropriate 16 bytes) from
the virtual address is sent to the data cache (step 2). The fully associative TLB
simultaneously searches all 40 entries to find a match between the address and a
valid PTE (steps 3 and 4). In addition to translating the address, the TLB checks
to see if the PTE demands that this access result in an exception due to an access
violation.
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Figure 5.18 The virtual address, physical address, indexes, tags, and data biocks for the AMD Opteron caches
and TLBs. Since the instruction and data hierarchies are symmetric, we only show one.The L1 TLB is fully associa-
tive with 40 entries. The L2 TLB is 4-way set associative with 512 entries.The L1 cache is 2-way set associative with 64-
byte blocks and 64 KB capacity.The L2 cache is 16-way set associative with 64-byte blocks and 1 MB capacity. This fig-
ure doesn’t show the valid bits and protection bits for the caches and TLBs, as does Figure 5.19.

An 1 TLB miss first goes to the L2 1 TLB. which contains 512 PTEs of 4 KB
page sizes and is four-way set associative. It takes 2 clock cycles to load the LI
TLB from the L2 TLB. The traditional 80x86 TLB scheme flushes all TLBs if the
page directory pointer register is changed. In contrast, Opteron checks for
changes to the actual page directory in memory and flushes only when the data
structure is changed, thereby avoiding some flushes.

In the worst case, the page is not in memory, and the operating system gets
the page from disk. Since millions of instructions could execute during a page
fault, the operating system will swap in another process if one is waiting to run.
Otherwise, if there is no TLB exception, the instruction cache access continues.

The index field of the address is sent to both groups of the two-way set-
associative data cache (step 5). The instruction cache tag is 40 — 9 bits (index) —
6 bits (block offset) or 25 bits. The four tags and valid bits are compared to the
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Figure 5.19 The AMD Opteron memory hierarchy.The L1 caches are both 64 KB, 2-way set associative with 64-byte
blocks and LRU replacement. The L2 cache is 1 MB, 16-way set associative with 64-byte blocks, and pseudo LRU
replacement.The data and L2 caches use write back with write allocation.The L1 instruction and data caches are vir-
tually indexed and physically tagged, so every address must be sent to the instruction or data TLB at the same time
as it is sent to a cache. Both TLBs are fully associative and have 40 entries, with 32 entries for 4 KB pages and 8 for 2
MB or 4 MB pages. Each TLB has a 4-way set associative L2 TLB behind it, with 512 entities of 4 KB page sizes. Optercn

supports 48-bit virtual addresses and 40-bit physical addresses.
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physical page frame from the Instruction TLB (step 6). As the Opteron expects
16 bytes each instruction fetch, an additional 2 bits are used from the 6-bit block
offset to select the appropriate 16 bytes. Hence, 9 + 2 or 11 bits are used to send
16 bytes of instructions to the processor. The L1 cache is pipelined, and the
latency of a hit is 2 clock cycles. A miss goes to the second-level cache and to the
memory controller, to lower the miss penalty in case the .2 cache misses.

As mentioned earlier, the instruction cache is virtually addressed and physi-
cally tagged. On a miss, the cache controller must check for a synonym (two dif-
ferent virtual addresses that reference the same physical address). Hence. the
instruction cache tags are examined for synonyms in parallel with the L.2 cache
tags during an L2 lookup. As the minimum page size is 4 KB or 12 bits and the
cache index plus block offset is 15 bits, the cache must check 2* or 8 blocks per
way for synonyms. Opteron uses the redundant snooping tags to check all syn-
onyms in 1 clock cycle. If it finds a synonym, the offending block is invalidated
and refetched from memory. This guarantees that a cache block can reside in only
one of the 16 possible data cache locations at any given time.

The second-level cache tries to fetch the block on a miss. The L.2 cache is
1 MB, 16-way set associative with 64-byte blocks. It uses a pseudo-LRU scheme
by managing eight patrs of blocks LRU, and then randomly picking one of the
LRU pair on a replacement. The L2 index 1s

Index _ Cache size _ 1024K
Block size x Set associativity 64 x 16

2 1024 = 2'°

so the 34-bit block address (40-bit physical address — 6-bit block offset) is
divided into a 24-bit tag and a 10-bit index (step 8). Once again, the index and tag
are sent to all 16 groups of the 16-way set associative data cache (step 9), which
are compared in parallel. If one matches and is valid (step 10), it returns the block
in sequential order, 8 bytes per clock cycle. The L2 cache also cancels the mem-
ory request that the L1 cache sent to the controller. An .1 instruction cache miss
that hits in the L2 cache costs 7 processor clock cycles tfor the first word.

The Opteron has an exclusion policy between the L1 caches and the L2 cache
to try to better utilize the resources, which means a block is in L1 or L2 caches
but not in both. Hence, it does not simply place a copy of the block in the 1.2
cache. Instead, the only copy of the new block is placed in the L1 cache. The old
L1 block is sent to the .2 cache. If a block knocked out of the L2 cache is dirty, it
is sent to the write buffer, called the victim buffer in the Opteron.

In the last chapter, we showed how inclusion allows all coherency traffic to
affect only the L2 cache and not the L1 caches. Exclusion means coherency traf-
fic must check both. To reduce interference between coherency tratfic and the
processor for the L1 caches, the Opteron has a duplicate set of address tags for
coherency snooping.

If the instruction is not found in the secondary cache, the on-chip memory
controller must get the block from main memory. The Opteron has dual 64-bit
memory channels that can act as one [28-bit channel. since there is only one
memory controller and the same address is sent on both channels (step 11). Wide
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transfers happen when both channels have identical DIMMs. Each channel sup-
ports up to four DDR DIMMs (step 12).

Since the Opteron provides single-error correction/double-error detection
checking on data cache, L.2 cache, buses, and main memory, the data buses actu-
ally include an additional 8 bits for ECC for every 64 bits of data. To reduce the
chances of a second error, the Opteron uses idle cycles to remove singie-bit errors
by reading and rewriting damaged blocks in the data cache, L2 cache, and mem-
ory. Since the instruction cache and TL.Bs are read-only structures, they are pro-
tected by parity, and reread from lower levels if a parity error occurs.

The total latency of the instruction miss that is serviced by main memory is
approximately 20 processor cycles plus the DRAM latency for the critical
instructions. For a PC3200 DDR SDRAM and 2.8 GHz CPU, the DRAM Ilatency
is 140 processor cycles (50 ns) to the first 16 bytes. The memory controller fills
the remainder of the 64-byte cache block at a rate of 16 bytes per memory clock
cycle. With 200 MHz DDR DRAM. that is three more clock edges and an extra
7.5 ns latency, or 21 more processor cycles with a 2.8 GHz processor (step 13).

Opteron has a prefetch engine associated with the L2 cache (step 14). It looks
at patterns for L2 misses to consecutive blocks, either ascending or descending.
and then prefetches the next line into the L2 cache.

Since the second-level cache is a write-back cache, any miss can lead to an
old block being written back to memory. The Opteron places this “victim™ block
into a victim buffer (step 15), as it does with a victim dirty block in the data
cache. The buffer allows the original instruction fetch read that missed to proceed
first. The Gpteron sends the address of the victim out the system address bus fol-
lowing the address of the new request. The system chip set later extracts the vic-
tim data and writes it to the memory DIMMs.

The victim buffer is size eight. so many victims can be queued before being
written back either to L2 or to memory. The memory controller can manage up to
10 simultaneous cache block misses—8 from the data cache and 2 from the
instruction cache—-allowing it to hit under 10 misses, as described in Appendix
C. The data cache and L2 cache check the victim buffer for the missing block, but
it stalls unti] the data is written to memory and then refetched. The new data are
loaded inte the instruction cache as soon as they arrive (step 16). Once again,
because of the exclusion property, the missing block is not loaded into the
L2 cache.

If this initial instruction is a load, the data address is sent to the data cache
and data TLBs, acting very much like an instruction cache access since the
instruction and data caches and TLBs are symmetric. One difference is that the
data cache has two banks so that it can support two loads or stores simulta-
neously. as long as they address different banks. In addition, a write-back victim
can be produced on a data cache miss. The victim data are extracted from the data
cache simultaneously with the fill of the data cache with the L2 data and sent to
the victim buffer.

Suppose the instruction is a store instead of a load. When the store issues, it
does a data cache lookup just like a load. A store miss causes the block to be
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filled into the data cache very much as with a load miss. since the policy is to
allocate on writes. The store does not update the cache until later, after it is
known to be nonspeculative. During this time the store resides in a load-store
queue, part of the out-of-order control mechanism of the processor. It can hold up
to 44 entries and supports speculative forwarding results to the execution unit.
The data cache is ECC protected, so a read-modify-write operation is required to
update the data cache on stores. This is accomplished by assembling the full
block in the load/store queue and always writing the entire block.

Performance of the Opteron Memory Hierarchy

How well does the Opteron work? The bottom line in this evaluation is the per-
centage of time lost while the processor is waiting for the memory hierarchy. The
major components are the instruction and data caches, instruction and data TLBs,
and the secondary cache. Alas. in an out-of-order execution processor like the
Opteron, it is very hard to isolate the time waiting for memory, since a memory
stall for one instruction may be completely hidden by successful completion of a
later instruction.

Figure 5.20 shows the CPI and varicus misses per 1000 instructions for a
benchmark similar to TPC-C on a database and the SPEC2000 programs. Clearly,
most of the SPEC2000 programs do not tax the Opteron memory hierarchy, with
mcf being the exception. (SPEC nicknamed it the “cache buster” because of its
memory footprint size and its access patterns.) The average SPEC I cache misses
per instruction is 0.01% to 0.09%. the average D cache misses per instruction are
1.34% to 1.43%, and the average L2 cache misses per instruction are 0.23% to
0.36%. The commercial benchmark does exercise the memory hierarchy more,
with misses per instruction of 1.83%, 1.39%, and 0.62%, respectively.

How do the real CPIs of Opteron compare to the peak rate of 0.33, or 3
instructions per clock cycle? The Opteron completes on average 0.8-0.9 instruc-
tions per clock cycle for SPEC2000, with an average CPI of 1.15-1.30. For the
database benchmark, the higher miss rates for caches and TLBs yields a CPI of
2.57. or 0.4 instructiens per clock cycle. This factor of 2 slowdown in CPI for
TPC-C-like benchmarks suggests that microprocessors designed in servers see
heavier demands on the memory systems than do microprocessors for desktops.
Figure 5.21 estimates the breakdown between the base CPI of 0.33 and the stalls
for memory and for the pipeline.

Figure 5.21 assumes none of the memory hierarchy misses are overlapped
with the execution pipeline or with each other, so the pipeline stall portion is a
lower bound. Using this calculation, the CPI above the base that is attributable to
memory averages about 50% for the integer programs (from 1% for eon to 100%
for vpr) and about 60% for the floating-point programs (from 12% for sixtrack to
98% for applu). Going deeper into the numbers, about 50% of the memory CPI
(25% overall) is due to [.2 cache misses for the integer programs and L2 repre-
sents about 70% of the memory CPI for the floating-point programs (40% over-
all). As mentioned earlier, L2 misses are so long that it is difficult to hide them
with extra work.
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Misses per 1000 instructions

Benchmark Avg CP!  Icache Dcache L2 ITLB L1 DTLB L1 ITLBL2 DTLBL2
TPC-C-like 2.57 18.34 13.89 6.18 3.25 9.00 0.09 1.71
SPECint2000 total 1.30 0.90 14.27 3.57 0.25 12.47 0.00 1.06
164.gzip 0.86 0.0t 16.03 0.10 0.01 11.06 0.00 0.09
175.vpr 1.78 0.02 23.36 573 0.0t 50.52 0.00 3.22
176.gcc 1.02 1.94 19.04 0.90 0.79 4.53 0.00 0.19
181 mef 13.06 0.02 14890  103.82 0.01 50.49 0.00 2698
I86.crafty 0.72 3.15 4.05 0.06 0.16 18.07 0.00 0.01
197 parser 1.28 0.08 14.80 1.34 0.01 11.56 0.00 0.65
252.e0n 0.82 0.06 0.45 0.00 0.01 0.05 0.00 0.00
253.perlbmk 0.70 1.36 241 0.43 0.93 3.51 0.00 0.31
254.gap 0.86 0.76 4.27 0.58 0.05 3.38 0.00 0.33
255.vortex 0.88 3.67 5.86 1.17 0.68 15.78 0.00 1.38
256.bzip2 1.00 0.01 10.57 294 0.00 8.17 0.00 0.63
300.twolf 1.85 0.08 26.18 4.49 0.02 14.79 0.00 0.01
SPECtp2000 total 115 0.08 13.43 2.26 0.01 3.70 0.00 0.79
168.wupwise 0.83 0.00 6.56 1.66 0.00 0.22 0.00 0.17
171.swim 1.88 0.01 30.87 2.02 0.00 0.59 0.00 0.41
172.mgrid 0.89 0.01 16.54 1.35 0.00 0.35 0.00 0.25
173.applu 0.97 0.01 8.48 3.41 0.00 242 0.00 0.13
177 . mesa 0.78 0.03 1.58 0.13 0.01 8.78 0.00 0.17
178 galgel 1.07 0.01 18.63 2.38 0.00 7.62 0.00 0.67
179.art 3.03 0.00 56.96 8.27 0.00 1.20 0.00 0.41
183.equake 2.35 0.06 37.29 3.30 0.00 1.20 0.00 0.59
187 facerec 1.07 0.01 9.31 3.94 0.00 1.21 0.00 0.20
iRS.ummp 1.19 0.02 16.58 2.37 0.00 8.61 0.00 3.25
189.lucas 1.73 0.00 17.35 4.36 0.00 4.80 0.00 3.27
191.fma3d 1.34 0.20 11.84 3.02 0.05 0.36 0.00 0.21
200.sixtrack 0.63 0.03 0.53 0.16 0.01 0.66 0.00 0.01
301.apsi 1.17 0.50 13.8] 2.48 0.0t 10.37 0.00 1.69

Figure 5.20 CPland misses per 1000 instructions for running a TPC-C-like database workload and the SPEC2000
benchmarks on the AMD Opteron. Since the Opteron uses an out-of-order instruction execution, the statistics are
calculated as the number of misses per 1000 instructions successfully committed.
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Figure 5.21 Area plots that estimate CPi breakdown into base CPI, memory stalls,
and pipeline stalls for SPECint2000 programs (plus a TPC-C-like benchmark) on the
top and SPECfp2000 on the bottom. They are sorted from lowest to highest overall
CPl.We estimated the memory CPl by multiplying the misses per instruction at the vari-
ous levels by their miss penalties, and subtracted it and the base CPI from the measured
CPI to calculate the pipeline stall CPl. The L2 miss penalty is 140 clock cycles, and all
other misses hit in the L2 cache. This estimate assumes no overlapping of memory and
execution, so the memory portion is high, as some of it is surely overlapped with pipe-
line stalls and with other memory accesses. Since it would overwhelm the rest of the
data with its CPI of 13.06, mcf is not included. Memory misses must be overlapped in
mcf; otherwise the CPl would grow to 18.53.

Finally, Figure 5.22 compares the miss rates of the data caches and the L.2
caches of Opteron to the Intel Pentium 4, showing the ratio of the misses per
instruction for 10 SPEC2000 benchmarks. Although they are executing the same
programs compiled for the same instruction set. the compilers and resulting code
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Figure 5.22 Ratio of misses per instruction for Pentium 4 versus Opteron. Bigger
means a higher miss rate for Pentium 4. The 10 programs are the first 5 SPECint2000
and the first 5 SPECfp2000. (The two processors and their memory hierarchies are
described in the table in the text.) The geometric mean of the ratio of performance of
the 5 SPECint programs on the two processors is 1.00 with a standard deviation of 1.42;
the geometric mean of the performance of the 5 SPECfp programs suggests Opteron is
1.15 times faster, with a standard deviation of 1.25. Note the clock rate for the Pentium
4 was 3.2 GHz in these experiments; higher-clock-rate Pentium 4s were available but
not used in this experiment. Figure 5.10 shows that half of these programs benefit sig-
nificantly from the prefetching hardware of the Pentium 4: mcf, wupwise, swim, mgrid,
and applu.

sequences ate different as are the memory hierarchies. The following table sum-
marizes the two memory hierarchies:

Processor Pentium 4 (3.2 GHz) Opteron (2.8 GHz)

Data cache 8-way associative, 16 KB, 2-way associative, 64 KB,
64-byte block 64-byte block

L2 cache 8-way associative, 2 MB, 16-way associative, | MB,
128-byte block, inclusive of 64-byte block, exclusive of D cache
D cache

Prefetch 8 streams to L2 1 stream to L2

Although the Pentium 4 has much higher associativity, the four times larger
data cache of Opteron has lower L1 miss rates. The geometric mean of the ratios
of L1 miss rates is 2.25 and geometric standard deviation is 1.75 for the five
SPECint2000 programs; they are 3.37 and 1.72 for the five SPECfp2000 pro-
grams (see Chapter | to review geometric means and standard deviations).
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With twice the L2 block size and LZ cache capacity and more aggressive
prefetching, the Pentium 4 usually has fewer L2 misses per instruction. Surpris-
ingly, the Opteron L2 cache has fewer on 4 of the 10 programs. This variability is
reflected in the means and high standard deviations: the geometric mean and
standard deviation of the ratios of L2 miss rates is 0.50 and 3.45 for the integer
programs and 1.48 and 2.66 for the floating-point programs. As mentioned ear-
lier, this nonintuitive result could simply be the consequence of using different
compilers and optimizations. Another possible explanation is that the lower
memory latency and higher memory bandwidth of the Opteron helps the effec-
tiveness of its hardware prefetching, which is known to reduce misses on many of
these floating-point programs. (See Figure 5.10 on page 306.)

Fallacies and Pitfalls

As the most naturally quantitative of the computer architecture disciplines, mem-
ory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Yet we
were limited here not by lack of warnings, but by lack of space!

Predicting cache performance of one program from another.

Figure 5.23 shows the instruction miss rates and data miss rates for three pro-
grams from the SPEC2000 benchmark suite as cache size varies. Depending on
the program, the data misses per thousand instructions for a 4096 KB cache is 9,
2, or 90, and the instruction misses per thousand instructions for a 4 KB cache is
55, 19, or 0.0004. Commercial programs such as databases will have significant
miss rates even in large second-level caches, which is generally not the case for
the SPEC programs. Clearly, generalizing cache performance from one program
to another is unwise.

160 oo

betaees heaien . D: lucas D:gcc I:gcc
140 NG - D:gap - l:gap —®— |:lucas

Misses per
1000 instructions

4 16 64 256 1024 4096
Cache size (KB)

Figure 5.23 Instruction and data misses per 1000 instructions as cache size varies
from 4 KB to 4096 KB. Instruction misses for gcc are 30,000 to 40,000 times larger than
lucas, and conversely, data misses for lucas are 2 to 60 times larger than gcc. The pro-
grams gap, gcc, and lucas are from the SPEC2000 benchmark suite.
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Pitfall

Pitfall

Simulating enough instructions to get accurate performance measures of the
memory hierarchy.

There are really three pitfalls here. One is trying to predict performance of a large
cache using a small trace. Another is that a program’s locality behavior is not
constant over the run of the entire program. The third is that a program’s locality
behavior may vary depending on the input.

Figure 5.24 shows the cumulative average instruction misses per thousand
instructions for five inputs to a single SPEC2000 program. For these inputs, the
average memory rate for the first 1.9 billion instructions is very different from the
average miss rate for the rest of the execution.

The first edition of this book included another example of this pitfall. The
compulsory miss ratios were erroneously high (e.g., 1%) because of tracing too
few memory accesses. A program with a compulsory cache miss ratio of 1% run-
ning on a ccmputer accessing memory 10 million times per second (at the time of
the first edition) would access hundreds of megabytes of memory per minute:

10,000,000 accesses % 0.01 misses % 32 bytes « 60 seconds _ 192,000,000 bytes

Second Access Miss =~ Minute Minute

Data on typical page fault rates and process sizes do not support the conclusion
that memory is touched at this rate.

Overemphasizing memory bandwidth in DRAMs.

Several years ago, a startup named RAMBUS innovated on the DRAM interface.
Its product, Direct RDRAM, offered up to 1.6 GB/sec of bandwidth from a single
DRAM. When announced, the peak bandwidth was eight times faster than indi-
vidual conventional SDRAM chips. Figure 5.25 compares prices of various ver-
sions of DRAM and RDRAM, in memory modules and in systems.

PCs do most memory accesses through a two-level cache hierarchy, so it was
unclear how much benefit is gained from high bandwidth without also improving
memory latency. According to Pabst {2000], when comparing PCs with 400 MHz
DRDRAM 10 PCs with 133 MHz SDRAM,; for office applications they had iden-
tical average performance. For games, DRDRAM was 1% to 2% faster. For pro-
fessional graphics applications, it was 10% to 15% faster. The tests used an 800
MHz Pentium HI (which integrates a 256 KB L2 cache), chip sets that support a
133 MHz system bus, and 128 MB of main memory.

One measure of the RDRAM cost is die size; it had about a 20% larger die for
the same capacity compared to SDRAM. DRAM designers use redundant rows
and columns to improve yield significantly on the memory portion of the DRAM,
so a much larger interface might have a disproportionate impact on yield. Yields
are a closely guarded secret, but prices are not. Using the evaluation in Figure
5.25, in 2000 the price was about a factor of 2-3 higher for RDRAM. In 2006.
the ratio 1s not less.

RDRAM was at its strongest in small memory systems that need high band-
width, such as a Sony Playstation.
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5.7 Fallacies and Pitfalls
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Figure 5.24 Instruction misses per 1000 references for five inputs to perl bench-
mark from SPEC2000. There is little variaticn in misses and little difference between
the five inputs for the first 1.9 billion instructions. Running to completion shows how
misses vary over the life of the program and how they depend on the input. The top
graph shows the running average misses for the first 1.9 billion instructions, which
starts at about 2.5 and ends at about 4.7 misses per 1000 references for all five inputs.
The bottom graph shows the running average misses to run to completion, which takes
16-41 billion instructions depending on the :nput. After the first 1.9 billion instructions,
the misses per 1000 references vary from 2.4 to 7.9 depending on the input.The simula-
tions were for the Alpha processor using separate L1 caches for instructions and data,
each two-way 64 KB with LRU, and a unified * MB direct-mapped L2 cache.

Not delivering high memory bandwidth in a cache-based system

Caches help with average cache memory latency but may not deliver high mem-
ory bandwidth to an application that must go to main memory. The architect must
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Modules Dell XPS PCs
ECC? NoECC  ECC No ECC ECC
Label DIMM  RIMM A B B-A C D D-C
Memory or system? DRAM System DRAM System DRAM
Memory size (MB) 256 256 128 512 384 128 512 384
SDRAM PC100 $175 $259 $1519  $2139 $620 $1559  $2269 $710
DRDRAM PC700 $725 $826 $1689  $3009  $1320 $1789  $3409 $1620
Price ratio DRDRAM/SDRAM 4.1 32 i1 1.4 2.1 1.1 1.5 23

Figure 5.25 Comparison of price of SDRAM versus DRDRAM in memory modules and in systems in 2000.
DRDRAM memory modules cost about a factor of 4 more without ECC and 3 more with ECC. Looking at the cost of
the extra 384 MB of memory in PCs in going from 128 MB to 512 MB, DRDRAM costs twice as much. Except for differ-
ences in bandwidths of the DRAMs, the systems were identically configured. The Dell XPS PCs were identical except
for memory: 800 MHz Pentium Ill, 20 GB ATA disk, 48X CD-ROM, 17-inch monitor, and Microsoft Windows 95/98 and
Office 98. The module prices were the lowest found at pricewatch.com in June 2000. By September 2005, PC800
DRDRAM cost $76 for 256 MB, while PC100 to PC150 SDRAM cost $15 to $23, or about a factor of 3.3 to 5.0 less
expensive. (In September 2005 Dell did not offer systems whose only difference was type of DRAMs; hence, we stick
with the comparison from 2000.)

design a high bandwidth memory behind the cache for such applications. As an
extreme example, the NEC SX7 offers up to 16,384 interleaved SDRAM mem-
ory banks. It is a vector computer that doesn’t rely on data caches for memory
performance (see Appendix F). Figure 5.26 shows the top 10 results from the
Stream benchmark as of 2005, which measures bandwidth to copy data
[McCalpin 2005]. Not surprisingly, the NEC SX7 has the top ranking.

Only four computers rely on data caches for memory performance, and their
memory bandwidth is a factor of 7-25 slower than the NEC SX7.

Pitfall Implementing a virtual machine monitor on an instruction set architecture that
wasn't designed to be virtualizable.

Many architects in the 1970s and 1980s weren’t careful to make sure that all
instructions reading or writing information related to hardware resource informa-
tion were privileged. This laissez faire attitude causes problems for VMMs for all
of these architectures, including the 80x86, which we use here as an example.

Figure 5.27 describes the 18 instructions that cause problems for virtualization
[Robin and Irvine 2000]. The two broad classes are instructions that

m read control registers in user mode that reveals that the guest operating sys-
tem is running in a virtual machine (such as POPF mentioned earlier), and

m check protection as required by the segmented architecture but assume that
the operating system is running at the highest privilege level.
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1,000,000 —

100,000

10,000

Figure 5.26 Top 10 in memory bandwidth as measured by the untuned copy por-
tion of the stream benchmark [McCalpin 20051.The number of processors is shown in
parentheses. Two are cache-based clusters (SGl), two are cache-based SMPs (HP), but
most are NEC vector processors of different generations and number of processors. Sys-
tems use between 8 and 512 processors to achieve higher memory bandwidth. System
bandwidth is bandwidth of all processors collectively. Processor bandwidth is simply
system bandwidth divided by the number of processors. The STREAM benchmark is a
simple synthetic benchmark program that measures sustainable memory bandwidth
(in MB/sec) for simple vector kernels. It specifically works with data sets much larger
than the available cache on any given system.

Virtual memory is also challenging. Because the 80x86 TLBs do not support
process ID tags, as do most RISC architectures, it is more expensive for the
VMM and guest OSes to share the TLB: each address space change typically
requires a TLB flush.

Virtualizing /O is also a challenge for the 80x86, in part because it both sup-
ports memory-mapped I/O and has separate I/O instructions, but more impor-
tantly, because there is a very large number and variety of types of devices and
device drivers of PCs for the VMM to handle. Third-party vendors supply their
own drivers, and they may not properly virtualize. One solution for conventional
VM implementations is to load real device drivers directly into the VMM.

To simplify implementations of VMMs on the 80x86, both AMD and Intel
have proposed extensions to the architecture. Intel’s VT-x provides a new execu-
tion mode for running VMs, an architected definition of the VM state, instruc-
tions to swap VMs rapidly, and a large set of parameters to select the
circumstances where a VMM must be invoked. Altogether, VT-x adds 11 new
instructions for the 80x86. AMD’s Pacifica makes similar proposals.

After turning on the mode that enables VT-x support (via the new VMXON
instruction), VT-x offers four privilege levels for the guest OS that are lower in
priority than the original four. VT-x captures all the state of a virtual machine in
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Problem category Problem 80x86 instructions

Access sensitive registers without  Store global descriptor table register (SGDT)
trapping when running in user mode  Store local descriptor table register (SLDT)
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF. PUSHFD)
Pop flags (POPF. POPFD)

When accessing virtual memory Load access rights from segment descriptor (LAR)
mechanisms in user mode, Load segment limit from segment descriptor (LSL)
instructions fail the 80x86 Verify if segment descriptor is readable (VERR)
protection checks Verify if segment descriptor is writable (VERW)

Pop to segment register (POP CS, POP SS, .. .)
Push segment register (PUSH CS, PUSH SS. .. )
Far call to different privilege level (CALL)

Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)

Store segment selector register (STR)

Move to/from segment registers (MOVE)

Figure 5.27 Summary of 18 80x86 instructions that cause problems for virtualiza-
tion [Robin and Irvine 20001. The first five instructions of the top group allow a pro-
gram in user mode to read a control register, such as a descriptor table registers,
without causing a trap. The pop flags instruction modifies a control register with sensi-
tive information, but fails silently when in user mode. The protection checking of the
segmented architecture of the 80x86 is the downfall of the bottom group, as each of
these instructions checks the privilege level implicitly as part of instruction execution
when reading a control register. The checking assumes that the OS must be at the high-
est privilege level, which is not the case for guest VMs. Only the MOVE to segment regis-
ter tries to modify control state, and protection checking foils it as well.

the Virtual Machine Control State (VMCS), and then provides atomic instruc-
tions to save and restore a VMCS. In addition to critical state, the VMCS includes
configuration information to determine when to invoke the VMM, and then spe-
cifically what caused the VMM to be invoked. To reduce the number of times the
VMM must be invoked. this mode adds shadow versions of some sensitive regis-
ters and adds masks that check to see whether critical bits of a sensitive register
will be changed before trapping. To reduce the cost of virtualizing virtual mem-
ory, AMD’s Pacifica adds an additional level of indirection, called nested page
tables. It makes shadow page tables unnecessary.

It is ironic that AMD and Intel are proposing a new mode. If operating sys-
tems like Linux or Microsoft Windows start using that mode in their kernel, the
new mode would cause performance problems for the VMM since it would be
about 100 times too slow! Nevertheless, the Xen organization plans to use VT-x
to allow it to support Windows as a guest OS.



5.8

5.8 Concluding Remarks 341

Concluding Remarks

Figure 5.28 compares the memory hierarchy of microprocessors aimed at desk-
top and server applications. The L1 caches are similar across applications, with
the primary differences being L2 cache size, die size. processor clock rate, and
instructions issued per clock.

The design decisions at all these levels interact, and the architect must take
the whole system view to make wise decisions. The primary challenge for the
memory hierarchy designer is in choosing parameters that work well together,

MPU AMD Opteron Intel Pentium 4 IBM Power 5 Sun Niagara
Instruction set architecture 80x86 (64b) 80x86 PowerPC SPARC v9
Intended application desktop desktop server server
CMOS process (nm) 90 90 130 90
Die size (mm”) 199 217 389 379
Instructions issued/clock 3 3 RISC ops 8 |
Processors/chip 2 i 2 &
Clock rate (2006) 2.8 GHz 3.6 GHz 2.0 GHz 1.2 GHz
Instruction cache per processor 64 KB. 12000 RISC op 64 KB. 16 KB,
2-way set trace cache 2-way set I-way set
associative (~96 KB) associative associative
Latency L1 I (clocks) 2 4 | 1
Data cache 64 KB. 16 KB, 32 KB. 8 KB,
per processor 2-way set 8-way set 4-way set -way set
associative associative associative associative
Latency L1 D (clocks) 2 2 2 1
TLB entries (I/D/L2 I/1.2 D) 40/40/512/512 128/54 1024/1024 64/64
Minimum page size 4 KB 4 KB - 4 KB 8 KB
On-chip L2 cache 2x | MB, 2 MB. 1.875 MB. 3 MB,
16-way set R-way set 10-way set 2-way set
associative associative associative associative
.2 banks 2 I B 3 4
Latency L2 (clocks) 7 n o 13 221.23D
Off-chip L3 cache — 36 MB, 12-way set —
associative (tags on chip)
Latency L3 (clocks) — - 87 —
Block size (L1I/L1D/L2/L3, bytes) 64 64/64/128/— 128/128/128/256 32/16/64/—
Memory bus width (bits) 128 64 64 128
Memory bus clock 200 MHz 200MHz 400 MHz 400 MHz
Number of memory buses 1 1 o 4 4

Figure 5.28 Memory hierarchy and chip size of desktop and server microprocessors in 2005.
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not in inventing new techniques. The increasingly fast processors are spending a
larger fraction of time waiting for memory, which has led to new inventions that
have increased the number of choices: prefetching, cache-aware compilers, and
increasing page size. Fortunately, there tends to be a few technological “sweet
spots” in balancing cost, performance, power, and complexity: Missing a target
wastes performance, power, hardware, design time, debug time, or possibly all
five. Architects hit a target by careful, quantitative analysis.

Historical Perspective and References

In Section K.6 on the companion CD we examine the history of caches, virtual
memory, and virtual machines. IBM plays a prominent role in the history of all
three. References for further reading are included.

Case Studies with Exercises by Norman P. Jouppi

Case Study 1: Optimizing Cache Performance via Simple
Hardware

Concepts illustrated by this case study

m  Small and Simple Caches

s Way Prediction

= Pipelined Caches

a Banked Caches

m  Merging Write Buffers

w Critical Word First and Early Restart
= Nonblocking Caches

m Calculating Impact of Cache Performance on Simple In-Order Processors

Imagine (unrealistically) that you are building a simple in-order processor that
has a CPI of 1 for all nondata memory access instructions. In this case study we
will consider the performance implications of small and simple caches, way-pre-
dicting caches, pipelined cache access, banked caches, merging write buffers, and
critical word first and early restart. Figure 5.29 shows SPEC2000 data miss ratios
(misses per 1000 instructions) with the harmonic mean of the full execution of all
benchmarks.

CACTI is a tool for estimating the access and cycle time, dynamic and leak-
age power, and area of a cache based on its lithographic feature size and cache
organization Of course there are many different possible circuit designs for a



(ase Studies with Exercises bv Norman P. Jouppi 343

D-cache misses/inst: 2,521,022,899,870 dats refs (0.32899--/:nst);

1,801,061,937,244 D-cache 64-byte block accesses (0.23289--/"nst)

Size Direct 2-way LRU 4-way LRUJ 8-way LRU Full LRU
1 KB 0.0863842-- 0.0697167-- 0.0634309-- 0.0563450-- 0.0533706--
2 KB 0.0571524-- 0.0423833-- 0.0360463-- 0.0330364-- 0.0305213--
4 KB 0.0370053-- 0.0260286-- 0.0222981-- 0.0202763-- 0.0190243--
8 KB 0.0247760-- 0.0155691-- 0.0129609-- 0.0107753-- 0.0083886--
16 KB 0.0159470-- 0.0085658-- 0.0063527-- 0.0056438-- 0.0050068--
32 KB 0.0110603-~ 0.0056101-- 0.0039150-- 0.0034628-- 0.0030885--
64 KB 0.0066425-- 0.0036625-- 0.0009874-- 0.0002666-- 0.0000106--
128 KB 0.0035823-- 0.0002341-- 0.00001€9-- 0.0000058-- 0.0000058--
256 KB 0.0026345-- 0.0000092-- 0.0000049-- 0.0000051-- 0.0000053--
512 KB 0.0014791-- 0.0000065-- 0.0000029-- 0.0000029-- 0.0000029--
1 MB 0.0000090-- 0.0000058-- 0.0000028-- 0.0000028-- 0.0000028--

Figure 5.29 SPEC2000 data miss ratios (misses per 1000 instructions) [Cantin and Hill 2003].

5.1

5.2

given cache organization, and many dirferent technologies for a given litho-
graphic feature size, but CACTI assumes a “generic” organization and technol-
ogy. Thus it may not be accurate for a specific cache design and technology in
absolute terms, but it is fairly accurate at quantifying the relative performance of
different cache organizations at different feature sizes. CACTI is available in an
online form at http://quid.hpl.hp.com:908 /cacti/. Assume all cache misses take
20 cycles.

[12/12/15/15] <5.2> The following quest:ons investigate the impact of small and
simple caches using CACTI, and assume a 90 nm (0.09 um) technology.

a. [12} <5.2> Compare the access times of 32 KB caches with 64-byte blocks
and a single bank. What is the relative access times of two-way and four-way
set associative caches in comparison to a direct-mapped organization?

b. [12] <5.2> Compare the access times of two-way set-associative caches with
64-byte blocks and a single bank. What is the relative access times of 32 KB
and 64 KB caches in comparison to a 16 KB cache?

¢. [15] <5.2> Does the access time for a typical level 1 cache organization
increase with size roughly as the capacity in bytes B, the square root of B, or
the log of B?

d. [15] <5.2> Find the cache organization with the lowest average memory
access time given the miss ratio table in Figure 5.29 and a cache access time
budget of 0.90 ns. What is this organization, and does it have the lowest miss
rate of all organizations for its capacity?

[12/15/15/10] <5.2> You are investigating the possible benefits of a way-predicting
level 1 cache. Assume that the 32 KB two-way set-associative single-banked level 1
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5.3

data cache is currently the cycle time limiter. As an alternate cache organization
you are considering a way-predicted cache modeled as a 16 KB direct-mapped
cache with 85% prediction accuracy. Unless stated otherwise, assume a mispre-
dicted way access that hits in the cache takes one more cycle.

a.

[12] <5.2> What is the average memory access time of the current cache ver-
sus the way-predicted cache?

[15] <5.2> If all other components could operate with the faster way-predicted
cache cycle time (including the main memory), what would be the impact on
performance from using the way-predicted cache?

[15] <5.2> Way-predicted caches have usually only been used for instruction
caches that feed an instruction queue or buffer. Imagine you want to try out
way prediction on a data cache. Assume you have 85% prediction accuracy,
and subsequent operations (e.g., data cache access of other instructions,
dependent operations, etc.) are issued assuming a correct way prediction.
Thus a way misprediction necessitates a pipe flush and replay trap, which
requires 15 cycles. Is the change in average memory access time per load
instruction with data cache way prediction positive or negative, and how
much is it?

[10] <5.2> As an alternative to way prediction, many large associative level 2
caches serialize tag and data access. so that only the required data set array
needs to be activated. This saves power but increases the access time. Use
CACTTI's detailed Web interface for a 0.090 pm process | MB four-way set-
associative cache with 64-byte blocks, 144 bits read out, 1 bank, only 1 read/
write port, and 30-bit tags. What are the ratio of the total dynamic read ener-
gies per access and ratio of the access times for serializing tag and data access
in comparison to parallel access?

[10/12/15] <5.2> You have been asked to investigate the relative performance of a
banked versus pipelined level 1 data cache for a new microprocessor. Assume a
64 KB two-way set-associative cache with 64 B blocks. The pipelined cache
would consist of two pipe stages, similar to the Alpha 21264 data cache. A
banked implementation would consist of two 32 KB two-way set-associative
banks. Use CACTTI and assume a 90 nm (0.09 um) technology in answering the
following questions.

a.

[10] <5.2> What is the cycle time of the cache in comparison to its access
time, and how many pipe stages will the cache take up (to two decimal
places)?

[12] <5.2> What is the average memory access time if 20% of the cache
access pipe stages are empty due to data dependencies introduced by pipelin-
ing the cache and pipelining more finely doubles the miss penalty?

[15] <5.2> What is the average memory access time of the banked design if
there is a memory access each cycle and a random distribution of bank
accesses (with no reordering) and bank conflicts cause a one-cycle delay?
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[12/15] <5.2> Inspired by the usage of critical word first and early restart on level
1 cache misses. consider their use on level 2 cache misses. Assume a 1 MB L2
cache with 64-byte blocks and a refill path that is 16 bytes wide. Assume the L.2
can be written with 16 bytes every 4 processor cycles, the time to receive the first
16-byte block from the memory controller is 100 cycles, each additional 16 B
from main memory requires 16 cycles and data can be bypassed directly into the
read port of the L2 cache. Ignore any cycles to transfer the miss request to the
level 2 cache and the requested data to the level 1 cache.

a. [12] <5.2> How many cycles would it take to service a level 2 cache miss
with and without critical word first and early restart?

b. [15] <5.2> Do you think critical werd first and early restart would be more
important for level 1 caches or leve! 2 caches, and what factors would con-
tribute to their relative importance?

[10/12] <5.2> You are designing a write buffer between a write-through level 1
cache and a write-back level 2 cache. The level 2 cache write data bus is 16 bytes
wide and can perform a write to an independent cache address every 4 processor
cycles.

[10} <5.2> How many bytes wide should each write buffer entry be?

b. [12] <5.2> What speedup could be expected in the steady state by using a
merging write buffer instead of a nonmerging buffer when zeroing memory
by the execution of 32-bit stores if all other instructions could be issued in
parallel with the stores and the blocks are present in the level 2 cache?

Case Study 2: Optimizing Cache Performance via Advanced
Techniques

Concepts illustrated by this case study

m  Nonblocking Caches

s Compiler Optimizations for Caches

m  Software and Hardware Prefetching

m  Calculating Impact of Cache Performance on More Complex Processors

The transpose of a matrix interchanges its rows and columns and is illustrated
below:

(A1l A12 A13 A14] {Ail A21 A31 A4l
A2I A2 AZ3 A2 |AI2 A2 AR AS2
A31 A32 A33 A34|  |AI3 A23 A33 Ad3
A4l A42 A43 A44] |Al4 A24 A34 A44)
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5.6

5.7

5.8

Here is a simple C loop to show the transpose:

for (i = 0; 1 < 3; i++) {
for (3 = 0; § < 33 j=+) {
ovtput [j1[i] = input[iljl;

Assume toth the input and output matrices are stored in the row major order

(row major order means row index changes fastest). Assume you are executing a
256 x 256 double-precision transpose on a processor with a 16 KB fully associa-
tive (so you con’t have to worry about cache conflicts) LRU replacement level 1
data cache with 64-byte blocks. Assume level 1 cache misses or prefetches
require 16 cycles. always hit in the level 2 cache. and the level 2 cache can pro-
cess a request every 2 processor cycles. Assume each iteration of the ner loop
above requires 4 cycles if the data is present in the level | cache. Assume the
cache has a write-allocate fetch-on-write policy for write misses. Unrealisticalty
assume writing back dirty cache blocks require 0 cycles.
[10/15/15] <5.2> For the simple implementation given above. this execution
order would be nonideal for the input.matrix. However, applying a loop inter-
change optimization would create a nonideal order for the output matrix. Because
loop interchange is not sufficient to improve its performance. it must be blocked
instead.

a. [10] <5.2> What block size should be used to completely fill the data cache
with one input and cutput block?

b. [15] <5.2> How do the relative number of misses of the blocked and
unblocked versions compare :f the Jevel 1 cache is direct mapped?
c. [13] <58.2> Write code to perform a transpose with a block size parameter B
that uses 3 x B blocks.
[12] <5.2> Assumme you are redesigning a hardware pretetcher for the unblocked
matrix transposition code above. The simplest type of hardware prefetcher only
prefetches sequential cache blocks after a miss. More complicated “nonunit
stride™ hardware prefetchers can analyze a miss reference stream, and detect and
prefetch nonunit strides. In contrast, software prefetching can determine nonunit
strides as easily as it can determine unit strides. Assume pretetches write directly
into the cache and no pollution (overwriting data that needs to be used before the
data that is prefetched). In the steady state of the inner loop. what is the perfor-
mance (in cycles per iteration) when using an ideal nonunit stride prefetcher?
[15/15] <5.2> Assume you are redesigning a hardware prefetcher for the
unblocked matrix transposition code as in Exercise 5.7. However, in this case we
evaluate a simple two-stream sequential prefetcher. It there ure level 2 access
slots available, this prefetcher will feteh up to 4 sequential blocks after a miss and
place them in a stream buffer. Stieam buffers that have empty slots obtain access
to the Jevel 2 cache on a round-robin basis. On a level | miss, the stream buffer
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that has least recently supplied data on a miss is flushed and reused for the new
miss stream.

a. [15]} <5.2> In the steady state of the inner loop, what is the performance (in
cycles per iteration) when using a simple two-stream sequential prefetcher
assuming performance is limited by prefetching?

b. [15] <5.2> What percentage of prefetches are useful given the level 2 cache
parameters?

[12/15] <5.2> With software prefetching it is important to be careful to have the
prefetches occur in time for use, but also minimize the number of outstanding
prefetches, in order to live within the capabilities of the microarchitecture and
minimize cache pollution. This is complicated by the fact that different proces-
sors have different capabilities and limitat:ons.

a. [12] <5.2> Modify the unblocked code above to perform prefetching in soft-
ware.

b. [15] <5.2> What is the expected performance of unblocked code with soft-
ware prefetching?

Case Study 3: Main Memory Technology and Optimizations

Concepts illustrated by this case study

»  Memory System Design: Latency. Bandwidth, Cost. and Power

a  Calculating Impact of Memory Systeni Performance

Using Figure 5.14, consider the design of & variety of memory systems. Assume a
chip multiprocessor with eight 3 GHz cores and directly attached memory control-
lers (i.e., integrated northbridge) as in the Opteron. The chip multiprocessor (CMP)
contains a single shared level 2 cache, with misses from that level going to main
memory (i.e.. no level 3 cache). A sample DDR2 SDRAM timing diagram appears
in Figure 5.30. tpcp is the time required to activate a row in a bank, while the CAS
latency (CL) is the number of cycles required to read out a column in a row.

RD
BO,Cx

Clock

CMD/ | ACT
ADD | BO,Rx
Data

'RCD

CAS !élen(ty

Figure 5.30 DDR2 SDRAM timing diagram.
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511

512

513

Assume the RAM is on a standard DDR2 DIMM with ECC. having 72 data lines.
Also assume burst lengths of 8 which read out 8 bits per data line, or a total of 32
bytes from the DIMM. Assume the DRAMSs have a 1 KB page size, 8 banks, tpcp =
CL * Clock_frequency, and Clock_frequency = Transfers_per_second/2. The on-
chip latency on a cache miss through levels 1 and 2 and back not including the
DRAM access is 20 ns. Assume a DDR2-667 1 GB DIMM with CL = 5 is available
for $130 and a DDR2-533 1 GB DIMM with CL = 4 is available for $100. (See
hitp://download. micron.con/pdfitechnotes/ddr2/TN4702.pdf for more details on
DDR2 memory organization and timing.)

[10/10/10/12/12] <5.3> Assume the system 1s your desktop PC and only one core
on the CMP is active. Assume there is only one memory channel.

a. [10] <5.3> How many DRAMs are on the DIMM if 5]2 Mbit DRAMs are
used. and how many data [/Os must each DRAM have if only one DRAM
connects to each DIMM data pin?

b. [10] <5.3> What burst length is required to support 32-byte versus 64-byte
level 2 cache blocks?

¢. [10] <5.3> What is the peak bandwidth ratio between the DIMMs for reads
from an active page?

d. [12] <5.3> How much time is required from the presentation of the activate
command until the last requested bit of data from the DRAM transitions from
valid to invalid for the DDR2-533 1 GB CL = 4 DIMM?

e. [12] <5.3> What is the relative latency when using the DDR2-533 DIMM of
a read requiring a bank activate versus one to an already open page. including
the time required to process the miss inside the processor?

[15] <5.3> Assume just one DIMM is used in a system, and the rest of the system
costs $800. Consider the performance of the system using the DDR2-667 and
DDR2-533 DIMMs on a workload with 3.33 level 2 misses per 1K instructions,
and assume all DRAM reads require an activate. Assume all § cores are active
with the same workload. What is the cost divided by the performance of the
whole system when using the different DIMMs assuming only one level 2 miss is
outstanding at a time and an in-order core with a CPI of 1.5 not including level 2
cache miss memory access time?

[12] <5.3> You are provisioning a server based on the system above. All 8 cores
on the CMP will be busy with an overall CPI of 2.0 (assuming level 2 cache miss
refills are not delayed). What bandwidth is required to support all 8 cores running
a workload with 6.67 level 2 misses per 1K instructions, and optimistically
assuming misses from all cores are uniformly distributed in time?

[12] <5.3> A large amount (more than a third) of DRAM power can be due to page
activation (see htp://download.micron.com/pdffiechnotes/ddr2/TN4704.pdf and
http:/fwww.micron.com/systemcalc). Assume you are building a system with | GB
of memory using either 4-bank 512 Mbit x 4 DDR2 DRAM:s or 8-bank | Gbit X 8
DRAMs, both with the same speed grade. Both use a page size of 1 KB. Assume
DRAMs that are not active are in precharged standby and dissipate negligible
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power. Assume the time to transition from standby to active is not significant.
Which type of DRAM would be expected to result in lower power? Explain why.

Case Study 4:Virtual Machines

Concepts illustrated by this case study

s Capabilities Provided by Virtual Machines
s Impact of Virtualization on Performance

m Features and Impact of Architectural Extensions to Support Virtualization

Intel and AMD have both created extensions to the x86 architecture to address
the shortcomings of the x86 for virtualization. Intel’s solution is called VT-x (Vir-
tualization Technologv x86) (see IEEE [2005] for more information on VT-x),
while AMD’s is called Secure Visual Machine (SVM). Intel has a corresponding
technology for the Itanium architecture called VT-i. Figure 5.31 lists the early
performance of various system calls under native execution, pure virtualization,
and paravirtualization for LMbench using Xen on an Itanium system with times
measured in microseconds (courtesy of Matthew Chapman of the University of
New South Wales).

[10/10/10/10/10) <5.4> Virtual machines have the potential for adding many ben-
eficial capabilities to computer systems, for example, resulting in improved total
cost of ownership (TCO) or availability. Could VMs be used to provide the fol-
lowing capabilities? If so, how could they facilitate this?

a. [10] <5.4> Make it easy to consolidate a large number of applications run-
ning on many old uniprocessor servers onto a single higher-performance
CMP-based server?

b. [10] <5.4> Limit damage caused by computer viruses, worms, or spyware?

€. [10] <5.4> Higher performance in memory-intensive applications with large
memory footprints?

d. [10] <5.4> Dynamically provision extra capacity for peak application loads?

e. [10] <5.4> Run a legacy application on old operating systems on modemn
machines?

[10/10/12/12] <5.4> Virtual machines can lose performance from a number of
events, such as the execution of privileged instructions, TLB misses, traps, and
I/0. These events are usually handled in system code. Thus one way of estimat-
ing the slowdown when running under a VM is the percentage of application
execution time in system versus user mode. For example, an application spend-
ing 10% of its execution in system mode might slow down by 60% when run-
ning on a VM.

a. [10] <5.4> What types of programs would be expected to have larger slow-
downs when running under VMs?



350 Chapter Five Memory Hierarchy Design

5.16

5.17

Benchmark Native Pure Para
Null call 0.04 0.96 0.50
Null YO 0.27 6.32 291
Stat 1.10 10.69 4.14
Open/close 1.99 20.43 7.71
Install sighandler 0.33 7.34 2.89
Handle signal 1.69 19.26 2.36
Fork 56.00 513.00 164.00
Exec 316.00 2084.00 578.00
Fork + exec sh 1451.00 7790.00 2360.00

Figure 5.31 Early performance of various system calls under native execution, pure
virtualization, and paravirtualization.

b. [10] <5.4> If slowdowns were linear as a function of system time, given the
slowdown above, how much slower would a program spending 30% of its
execution in system time be expected to run?

C. [12] <5.4> What is the mean slowdown of the functions in Figure 5.31 under
pure and para virtualization”

d. [12] <5.4> Which functions in Figure 5.31 have the smallest slowdowns?
What do you think the cause of this could be?

[12] <5.4> Popek and Goldberg’s definition of a virtual machine said that it
would be indistinguishable from a real machine except for its performance. In
this exercise we’ll use that definition to find out if we have access to native execu-
tion on a processor or are running on a virtual machine. The Intel VT-x technol-
ogy effectively provides a second set of privilege levels for the use of the virtual
machine. What would happen to relative performance of a virtual machine if it
was running on a native machine or on another virtual machine given two sets of
privilege levels as in VT-x?

[15/20] <5.4> With the adoption of virtualization support on the x86 architecture,
virtual machines are actively evolving and becoming mainstream. Compare and
contrast the Intel VT-x and AMD Secure Virtual Machine (SVM) virtualization
technologies. Information on AMD’s SVM can be found in http://ww.amd.com/
us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf.

a. [15] <5.4>How do VT-x and SVM handle privilege-sensitive instructions?

b. [20] <5.4> What do VT-x and SVM do to provide higher performance for
memory-intensive applications with large memory footprints?
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Case Study 5: Putting It All Together: Highly Parallel Memory
Systems

Concept illustrated by this case study

Understanding the Impact of Memory System Design Tradeofts on Machine
Performance

The program in Figure 5.32 can be used to evaluate the behavior of a memory
system. The key is having accurate timing and then having the program stride
through memory to invoke different leveis of the hierarchy. Figure 5.32 is the
code in C. The first part is a procedure that uses a standard utility to get an accu-
rate measure of the user CPU time; this procedure may need to change to work
on some systems. The second part is a nested loop to read and write memory at
different strides and cache sizes. To get accurate cache timing this code is
repeated many times. The third part times the nested loop overhead only so that it
can be subtracted from overall measured times to see how long the accesses were.
The results are output in .csn file format to facilitate importing into spreadsheets.
You may need to change CACHE_MAX depending on the question you are answer-
ing and the size of memory on the system you are measuring. Running the pro-
gram in single-user mode or at least without other active applications will give
more consistent results. The code in Figure 5.32 was derived from a program
written by Andrea Dusseau of U.C. Berkeley and was based on a detailed
description found in Saavedra-Barrera [1992]. It has been modified to fix a num-
her of issues with more modern machines and to run under Microsoft Visual
C++.

The program shown in Figure 5.32 assumes that program addresses track
physical addresses, which is true on the few machines that use virtually
addressed caches, such as the Alpha 21264. In general, virtual addresses tend to
{ollow physical addresses shortly after rebooting, so you may need to reboot the
machine in order to get smooth lines in your results. To answer the exercises,
assume that the sizes of all components of the memory hierarchy are powers of 2.
Assume that the size of the page is much larger than the size of a block in a sec-
ond-level cache (if there is one), and the size of a second-level cache block is
greater than or equal to the size of a block in a first-level cache. An example of
the output of the program is plotted in Figure 5.33, with the key listing the size of
the array that is exercised.

[10/12/12/12/12] <5.6> Using the sample program results in Figure 5.33:
a. [10] <5.6> How many levels of cache are there?
b. [12] <5.6> What are the overall size and block size of the first-level cache?

[12] <5.6> What is the miss penalty of the first-level cache?

d. [12] <5.6> What is the associativity of the first-level cache?

e. [12] <5.6> Whai effects can vou see when the size of the data used in the
array is equal to the size of the second-level cache?
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#include “stcatx.h"

#include <stcio.h>

#include <time.h>

#define ARRAY MIN 51024) /* 1/4 smailest cache *é
#define ARRAY MAX (4096*4096) /* 1/4 largest cache */
int x[ARRAY_MIX]; /* array going to stride through */

double get seconds() { /* routine to read time in seconds */
time63d = Ttime;
'“fime645‘m time J;
return {double) Ttime;

int label(int i) {/* generate text labels */
if (i<le3) printf("%1dB,",i);
else if E‘<166; printh"%ldK,“,i/1024);
else if (:<1e9) printf("%1dM,",i1/1048576);
else printf("%1dG,",i/1073741824);
return 0;

}

int tmain(irt argc, TCHAR* argv[]) {

int register nextstep, i, index, stride;

int csize;

double steps, tsteps;

doubte loadtime, lastsec, secO, secl, sec; /* timing variables */

/* Initialize output */

printf(" ,");

for (stride=1; stride <= ARRAY MAX/2; stride=stride*2)
label(str.de*sizeof(int)); ~

printf("\n");

/* Main loop for each configuration *

for (csize=ARRAY MIN; csize <= ARRAY MAX; csize=csize*2) {
1abel (csize*sizeof(int)); /* print cache size this loop */
for (stride=1; stride <= csize/2; stride=stride*2) {

/* Lay out path of memory references in array *{

for (index=0; index < csize; index=index+stride
x[index] = index + stride; /* pointer to next */

x[index-stride] = 0; /* loop back to beginning */

{* Wait for timer to roll over */
astsec = get_secondsgg;
do sec) = get”seconds(); while (secO == lastsec);

/* Walk through path in array for twenty seconds */
/* This gives 5% accuracy with second resolution */
steps = 0.0; /* number of steps taken */
nextstep = 0; /* start at beginning of path */
sec) = get seconds(); /* start timer */
do { /* repeat until collect 20 seconds */
for {i=stride;il=0;i=i-1) { /* keep samples same */
nextstep = 0;
do nextstep = x[nextstep]; /* dependency */
while (nextstep != 0);

steps = steps + 1.0; /* count loop iterations */
secl = get seconds(j; {* end timer */
} while {(secl - secB) < 20.0); /* collect 20 seconds */
sec = secl - secO;

/* Repeat empty loop to loop subtract overhead */
tsteps = 0.0; /* used to match no. while iterations */
sec0 = get seconds(); /* start timer */
do { /* repeat until same no. iterations as above */
for (i=stride;i!=0;i=i-1) { /* keep samples same */
index = 0;
do index = index + stride;
white (index < csize);

tsteps = tsteps + 1.0;
secl = get seconds(); [* - overhead */
} while (tsteps<steps); { urtil = no. iterations */
sec = sec - (secl - sec0);
Toadtime = (sec*le9)/(steps*csize);
/* write out results in .csv format for Excel */
printf("%4.1f,", (loadtime<0.1) ? 0.1 : loadtime);
}; /* erd of inner for loop */
printf("\n");
}; /* end of outer for loop */
return 0;

Figure 5.32 C program for evaluating memory systems.



5.19

5.20

5.21

Read (ns)

Case Studies with Exercises by Norman P. Jouppi = 353

1000 FA T T T T T T s e s e U, j
R G

Lalloed

100 |

' ¢+
o
E

# = "
Ve A AL \R’{ LR A ;
. / A A o i |
S e e S

N e - bbbk
4B 16B  64B 256B 1K 4K 16K 534K 256K 1M 4M  16M  64M  256M
Strde

\

1

Figure 5.33 Sample resuits from program in Figure 5.32.

{15/20/25] <5.6> Modify the code in Figure 5.32 to measure the following sys-
tem characteristics. Plot the experimental results with elapsed time on the y-axis
and the memory stride on the x-axis. Use logarithmic scales for both axes, and
draw a line for each cache size.

a. [15] <5.6> Is the L1 cache write-throuzh or write-back?
b. [20] <5.6> Is the memory system blocking or nonblocking?

C. [25] <5.6> For a nonblocking memory system. how many outstanding memi-
ory references can be supported?

{25/25] <5.6> In multiprocessor memory systems, lower levels of the memory
hierarchy may not be able to be saturated by a single processor, but should be
able to be saturated by multiple processors. working together. Modify the code in
Figure 5.32, and run multiple copies at the same time. Can you determine:

a. [25] <5.6> How much bandwidth does a shared level 2 or level 3 cache (if
present) provide”

b. [25] <5.6> How much bandwidth does the main memory system provide?

[30] <5.6> Since instruction-level parallelism can also be effectively exploited
on in-order superscalar processors and VLLIWs with speculation, one important
reason for building an out-of-order (OOQ) superscalar processor is the ability
to tolerate unpredictable memory latency caused by cache misses. Hence, you
can think about hardware supporting OOOQ issue as being part of the memory
system! Look at the floorplan of the Alpha 21264 in Figure 5.34 to find the
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relative area of the integer and floating-point issue queues and mappers versus
the caches. The queues schedule instructions for issue, and the mappers rename
register specitiers. Hence these are necessary additions to support OOQ issue.
The 21264 only has level 1 data and instruction caches on chip. and they are
both 64 KB two-way set associative. Use an OOO superscalar simulator such
as Simplescalar (www.cs.wisc.edu/~mscalar/simplescalarhtml) on memory-
intensive benchmarks to find out how much performance is lost if the area of
the issue queues and mappers is used for additional level 1 data cache area in an
in-order superscalar processor. instead of OOO issue in a model of the 21264
Make sure the other aspects of the machine are as similar as possible to make
the comparison fair. [gnore any increase in access or cycle time from larger
caches and effects of the larger data cache on the floorplan of the chip. (Note
this comparison will not be totally fair. as the code will not have been sched-
uled for the in-order processor by the compiler.)
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Figure 5.34 Floorplan of the Alpha 21264 [Kessler 1999].
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